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Chapter 1

Introduction

A lot of computer science is dedicated to understanding the complexity of carrying out
computational tasks. Quite often the task involves an input based on which the computation
must give us a valid output. In the simple case of computing functions each input is associated
with a single valid output, and the task is to find what output the given input corresponds to.
When stated in this form, the task resembles a classification task wherein all the inputs are
being classified by their outputs.

However, the actual computation done in order to solve this classification task need not
resemble what we imagine when we think of classifying things. For instance, when the task is
to classify a given whole number as either prime or composite, some of the most widely used
classifiers do weird operations like tossing coins to get a random number and then repeatedly
squaring that random number. A less eccentric classifier would perhaps use a lookup table,
but such a lookup table would be prohibitively large as the numbers become larger. One can
make this lookup table smaller by taking a more coarse approach. Indeed, one can look at
the last digit. If it is 0, classify it as composite. If it is 2 or 5, then see whether it is a one
digit number. If yes, classify it as prime. If no, classify it as composite. In this new and really
short ‘generalized lookup table’ (we still are doing lookups to see which digit to look at and
what to output) we have already classified large swathes of numbers. However, a specification
of what to do if the last digit is not 0, 2 or 5 would be more complicated and so one would
imagine that the specification of such a classifier will also become prohibitively large. But can
we prove that any generalized lookup table that solves the above classification task necessarily
has to be large? Such questions are going to play a pivotal role in this thesis.

1.1 Generalized Lookup Tables: Decision Trees

Ingo Wegener [Weg00] notes that the above notion of classification has been around for a
long time, with the famous botanist Carl Linnaeus’ systems of nomenclature being quite
representative. Figure 1.1 shows how one can observe aspects of a member of the vegetable

1



2 CHAPTER 1. INTRODUCTION

kingdom in order to compute its class.
In the context of Boolean functions which take n bits of input and output 1 bit, which

will be the focus of a majority of this thesis, it was Lee [Lee59] who introduced the notion
of a Branching Program which is a quite similar model to what we attempted above for
classifying primes. Akers [Ake78] turned it into a graphical representation called a Binary
Decision Diagram. Both of these are aimed at giving small descriptions of functions instead
of specifying the values of the functions for each of the 2n inputs. We will be dealing with
a simpler model known as Decision Trees. Figure 1.2 shows a decision tree. To look up the
classification of an input, you start at the root and look at what index is specified at the root.
You then look at that bit of the input. If it is a 0, you go to the left child in the decision tree,
otherwise you go to the right child. You then continue to look up bits and traverse the tree
until you reach a leaf, where the classification of the input is specified.

Consider the model of computation wherein you want to compute a function but do not
know the input. You can access the input by querying its bits. So you create an algorithm that
will go about querying bits and computing the value of the function. Say you want to minimize
the number of queries you need to make in the worst case in order to compute the function.
Note that if the function has a decision tree T , then that gives us an obvious algorithm that
would just follow the correct path in the tree and compute the function. If q is the maximum
depth of a leaf of T , then the algorithm also makes q queries in the worst case. Conversely,
given any algorithm that computes the function we can create a decision tree out of it by
noting which bit it queries first, and then depending on the value of the queried bit, which
bit it queries next and so on. Hence we use the term Decision Tree and Query Algorithm
interchangeably. The natural measure of a query algorithm is the number of queries it makes.
The corresponding measure of a decision tree is the height of the decision tree. The decision
tree complexity (or query complexity) of a function f is the minimum, among all decision trees
computing f , of the height of the decision tree.

The notion of a decision tree is also very versatile. The decision tree in Figure 1.2 has
each node querying a single bit of the input. Depending on the use case, one can also study
decision trees that allow more complicated queries. For instance, part of this thesis works
with parity decision trees. At a node of a parity decision tree one can choose a subset of the
bits and query the parity of those bits. In another part of this thesis we will find ourselves
querying values and gradients of a real-valued function. This is hard to think of as a decision
tree given the abundance of possible answers one can get from a query. It is more natural to
think of it as a query algorithm. In the case of quantum query algorithms it is hard to fathom
what a corresponding decision tree would be and so we will stick to the term quantum query
algorithm. Despite it being such a simple model of computation, decision trees are very widely
used in a variety of fields of theoretical computer science.

• The most direct application is in scenarios where one’s computation involves a resource
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Figure 1.1: Carl Linnaeus’ ‘sexual system’ of classifying plants, from his book [Lin59] wherein
he tries to classify everything in nature (as per the book, nature is split into God and everything
in the physical world). The page shown shows how to classify the members of the vegetable
kingdom into classes. It first queries whether the flowers are visible. If they are not, the output
is Cryptogamia. If they are, it queries whether the flowers are hermaphrodites (having both
stamens and pistils in the same flowers). It continues in a similar vein.
Picture provided by Peter H. Raven Library/Missouri Botanical Garden under the Creative Commons
Attribution-Noncommercial 4.0 license.
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Figure 1.2: A decision tree computing the function that takes 5 bits z1z2z3z4z5 as input and
outputs 1 if there are two consecutive 0s and outputs 0 otherwise. A decision diagram would
have merged the leftmost z4 query and the rightmost z4 query because the subtrees below
them are the same. Decision trees are defined as trees, so they do not allow this merging.
Since there is leaf at depth 5, the depth of this tree is 5.

that is expensive to access. In such a scenario it is very useful to know the minimum
number of times one needs to access the resource. This is exactly what query complexity
deals with. Some nice examples of this are as follows.

– The folklore lower bound of Ω(n logn) for sorting with comparison queries is a
nearly immediate consequence of framing the question in the decision tree model.

– The decision tree model is also useful in solving fun puzzles such as “You have
12 balls that are all of the same weight, except for one ball that is either slightly
heavier or slightly lighter. You wish to identify both the defective ball and whether
it is heavier or lighter than the rest. What is the minimum number of weighings
you need to do on a beam balance in order to accomplish this?”

• We find it very challenging to compare the power of various Turing Machine models
in order to prove complexity class separations. Not surprisingly it is much easier to
compare the power of query complexity models and prove separations. Remarkably,
it is very common to use these query complexity separations in order to show oracle
separations in the Turing Machine models! See for instance [BGS75, Ver99, RT19].

• It is known that if a Boolean function f has small decision tree complexity, then f is
computed by a low-degree polynomial. Conversely every (total) Boolean function f that
is computed by a low-degree polynomial can be computed by a small-depth decision tree.
Such analyses have led to very interesting results such as the fact that approximating a
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total Boolean function with a polynomial can’t lower the degree required much more
than if you were to compute it exactly with a polynomial [NS92].

• Communication Complexity is a field with its own rich set of applications. Decision trees
have played a major role in a number of major results in communication complexity.
Lower bounds on the decision tree complexity of certain tasks are shown to hold for
related tasks in communication complexity, a fact that has enabled a lot of progress in
some fields. We will see more on this shortly.

• Quantum query complexity has served as a fruitful testing ground for analyzing the
power of quantum computation. Famous algorithms such as Grover’s unstructured search
algorithm and Shor’s period finding algorithm are actually quantum query algorithms
that vastly outperform known classical algorithms. Another interesting speedup is that
a single quantum query to a real-valued smooth function can give an arbitrarily close
approximation to the gradient of the function at a point. This could have consequences
for efficient algorithms for machine learning. We will see more on this as well.

We now take a closer look at communication complexity, the setting of the first result of
this thesis.

1.2 Communication Complexity

Communication complexity was introduced by Yao [Yao79] in order to analyze how much
information processors needed to exchange while computing a function whose inputs are
distributed between them.1 He noted that this model has a combinatorial flavour and
showed a connection with combinatorial rectangles. Over the course of the next few decades,
communication complexity has seen applications in various other fields including lower bounds
in streaming algorithms, data structures, formulas and extension complexity, with some being
the best known lower bounds to date. Let us take an informal and imprecise look at a few
applications.

• Lower bounds on the memory requirement of streaming algorithms: One could think of
the data being stored by an algorithm as a message being sent by the algorithm to its
future self. Such an interpretation was used by the seminal work of Alon, Matias and
Szegedy [AMS99] to show lower bounds on the memory needed by streaming algorithms
using lower bounds on one-way communication complexity.

• Data structure lower bounds: Say you have a data structure which is very efficient
(updates and queries can be performed with very little cost). Then a party who has

1He was inspired by a similar notion by Abelson [Abe78] which dealt only with smooth functions over
real-valued inputs.
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received all updates can send a short message to a party who has received most updates,
enabling the latter to answer queries “better” than it previously could. If your function is
complicated enough that it needs large communication in order to answer “better”, then it
cannot have such an efficient data structure. This method was introduced by [MNSW98]
and has been used to achieve state-of-the-art lower bounds such as that of [LWY20].

• Formula size lower bounds: Consider a communication protocol between two parties
that distinguishes a set A ⊆ {0, 1}n from its complement Ā in the sense that if the
former party has an input x ∈ A and the latter an input y ∈ Ā, the protocol outputs an
i ∈ [n] such that xi 6= yi. Such protocols can be shown to be equivalent to formulas that
compute the function 1A that outputs 1 if and only if its input x belongs to A [KW88].
This has led to quite strong formula lower bounds via communication complexity (see
for instance [DM18]).

• Extended formulation size of a polytope is known to be equivalent to nonnegative
rank of an associated matrix and the nonnegative rank can be lower bound using
communication complexity [Yan91]. Subsequent works have resulted in a tight relation
between nonnegative rank and communication cost [FFGT15] and recently this was used
in a breakthrough extension complexity lower bound [FMP+15].

• The optimal number of bits of communication required to compute a function with
worst-case advantage greater than half is, up to an additive constant, the logarithm of
the sign rank of a matrix associated with the function [PS86]. This link has contributed
to a deeper understanding of sign rank (see for instance [BMT19, HHL20]).

• The deterministic communication complexity of F is known to be quadratically related to
the logarithm of the nonnegative rank of an associated matrix [Lov90]. As a consequence
for every 0/1 matrix M , the logarithms of the nonnegative ranks of M and J−M cannot
be vastly different.

The last three applications above are of particular interest to us as we will be dealing with
variants of them. Let us take a closer look at communication complexity to enable ourselves
to talk about their variants. We formally define the model in more detail in Chapter 2.

In the simple case of two parties communicating, we default to the names Alice and Bob
to represent the two. We wish to study how much they need to interact in order to solve a
computational task. A natural task would be to compute a function that takes two inputs,
where one input is held by Alice and one input held by Bob, and outputs 1 bit. We represent
such ‘functions with two inputs’ by capital letters. So let F be a function taking two inputs,
one held by Alice and from the set X , the other held by Bob and from the set Y. Since they
both know the function F they will be required to compute, they agree on a protocol to follow
beforehand. The cost of the protocol is the maximum number of bits exchanged in the worst
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case during its execution. The deterministic communication complexity of F is the minimum
cost among protocols that compute F , and is denoted Dcc(F ). Note that the protocol can also
be specified as a tree. Each internal node is associated with either Alice or Bob, and is labeled
with a corresponding function that the relevant party should use in order to figure out what
bit to communicate and how the protocol should then proceed. The output of the protocol
will then be specified at the leaves of the tree.

A communication protocol as defined above is the same as a decision tree in which at each node one
is allowed to query arbitrary functions of Alice’s inputs (making the node an Alice node) or arbitrary
functions of Bob’s inputs (making the node a Bob node).

The function F can be specified by its outputs on the |X | × |Y| inputs. This is best
represented in the form of a matrix MF . The rows of MF are indexed by X , and the columns
are indexed by Y. The matrix entry MF [x, y] is F (x, y). (See Figure 2.1b for an example.)

It is known that a cost-c deterministic protocol computing F implies that the rank of
MF is at most 2c (see Lower bound 2). It is still unknown whether the rank of MF being 2c

implies that there is a communication protocol of cost cO(1). It is conjectured to be so, and
this conjecture is called the Log-Rank Conjecture (LRC, see Conjecture 3.2.3). It is worth
noting that similar statements are known to be true, three of which we have mentioned in
the applications above. The last of them is akin to saying that the Log-Nonnegative-Rank
Conjecture is true.2

Akin to the LRC, the analogous conjecture for bounded error communication complexity
was still open. A cost-c private-coin randomized protocol 3 computing F to within error ε
is proof that the ε-approximate rank of MF is at most 2c. (The ε-approximate rank of a
matrix M , rankε(M), is defined as the minimum rank of a matrix M ′, where ‖M ′−M‖∞ ≤ ε.)
It was unknown whether the 1/3-approximate rank of MF being 2c implies that there is a
private coin randomized communication protocol of cost cO(1). The Log-Approximate-Rank
Conjecture, posed by Lee and Shraibman [LS09b] (see Conjecture 3.2.14), conjectures that
it does. Interestingly, Gavinsky and Lovett [GL14] showed that the Log-Approximate-Rank
Conjecture implies the Log-Rank Conjecture. Another interesting consequence of the conjecture
would be that the randomized communication complexity of any total function would be within
a polynomial of its quantum communication complexity. Having shown that the deterministic
communication complexity is at most Õ(

√
rank(MF )), Lovett [Lov14] asked whether it could

be generalized to saying that the randomized communication complexity is at most the square
root of the approximate rank. This is still unknown and the best upper bound is just the
approximate rank itself [GS19] (see Theorem 3.2.15). It is worth noting that both the LRC
and the LARC are known to hold for some structured classes of functions. We will elaborate

2The nonnegative rank of a matrix M , denoted rank+(M), is defined as the minimum number of nonnegative
rank-1 matrices needed to sum to M .

3Both Alice and Bob have access to private sources of randomness that the protocol can use to aid its
computation. There is a probability that the protocol will output the wrong answer, but we want that for every
input (x, y) the protocol outputs the correct answer with probability at least 1− ε.
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on this shortly.
On the other hand, the Set Disjointness function on 2n bits is known to need Ω(n) bits of

communication even with randomness, and the logarithm of its approximate rank is merely
O(
√
n) [KS92, Raz03]. This shows that the exponent in the LARC conjecture is at least 2. More

recently, Göös, Jayram, Pitassi and Watson [GJPW17] came up with a 4th power separation
between randomized communication complexity and the logarithm of the approximate rank.

There are other conjectures along similar lines, notably the Log-Approximate-Nonnegative
Rank Conjecture [KMSY14] (see Conjecture 3.2.17) and Grolmusz’s Conjecture [Gro97] (see
Conjecture 3.2.28). We leave their details out of the introduction.

Although approximate ranks can be used to lower bound bounded error randomized
communication complexity, many other lower bound measures are also known. There is still a
lot left to be answered about the relative strengths of the lower bounds. We discuss them in
much more detail in Chapter 3. A few observations and expositions are included there that
have not been observed and exposited before in the literature, to the best of our knowledge.

There is a very important class of functions called composed functions. This class of
functions has been widely used in order to prove numerous separations between complexity
classes. These functions have a lot of structure that makes them easier to analyze. The
structure is also expected to reduce the study of their communication complexities to that of
query complexities (and in some cases it is known that this does happen). However, the analog
of the LARC (and even the LRC) in the standard query world is known to be true. Namely, the
deterministic and randomized query complexities are polynomially related to the polynomial
degree. This automatically makes the LRC and LARC true for those composed functions
wherein the communication complexity does reduce to the query complexity. However there
is one important class of composed functions where the communication complexity provably
does not reduce to query complexity. Rather it is expected to reduce to the model of query
complexity wherein “parity queries” are allowed, and where the analogues of the LRC and
LARC are not as well understood. We now take a look at such composed functions and that
query model.

1.2.1 XOR Functions and Parity Decision Trees

There is a vast body of literature on communication complexity that involves composed
functions. Given a function f : {0, 1}n → {0, 1} and a function G : {0, 1}b × {0, 1}b → {0, 1},
the function f ◦Gn is defined as the composition of f with Gn. That is, f ◦Gn : ({0, 1}b)n ×
({0, 1}b)n → {0, 1} maps

((x1, x2, . . . , xn), (y1, y2, . . . , yn)) 7→ f(G(x1, y1), G(x2, y2), . . . , G(xn, yn)).

We use f ◦ G to denote f ◦ Garity(f). When trying to compute f ◦ G, Alice and Bob could
follow the näıve protocol which uses a decision tree for f . When the decision tree asks for the
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ith bit of the input to f , Alice and Bob compute G on their inputs (xi, yi), find the ith bit of
input to f and then continue down the decision tree. If the decision tree makes q queries in
the worst case and the communication cost of G is c, the cost of the protocol is at most qc.

For various choices of G, it has been shown that this protocol is optimal [RM97, CKLM19].
Hence in such cases a lower bound on the communication complexity of f◦G follows from a lower
bound on the query complexity of f . This phenomenon is referred to as a deterministic lifting
theorem with gadget G. Similar lifting theorems are known in various models (randomized,
non-deterministic) and with various gadgets [GPW17, GLM+16]. Such connections between
query and communication lower bounds have led to a variety of lower bounds in communication
complexity with very wide-ranging applications (for example [RM97, GJPW17, GJW18]).

Here we will consider the case when the gadget G is the function XOR : {0, 1} × {0, 1} →
{0, 1} defined as XOR(x, y) = 0 if and only if x = y. Many natural functions are actually
functions that are composed with XOR. For instance, EQ : {0, 1}n × {0, 1}n → {0, 1}, which
asks whether two n-bits strings are equal, is the n-bit NOR composed with XOR. We refer to
these functions as XOR functions.

There is still a lot of work left in proving optimal lifting theorems for the XOR gadget.
One source of difficulty here is that f ◦ XOR can require far fewer bits of communication
than the number of queries f requires. In particular, if f is the parity function on n bits,
then f ◦ XOR is simply the parity function on 2n bits. This can be solved with 2 bits of
communication, although the query complexity of f is n. However, we can change our query
model so that we may ask it parity queries as well. For any subset S of the n input bits, we
can find out with one query whether the number of 1s present in those input bits is even or
odd. This query model is referred to as Parity Decision Trees (PDTs). The complexity of f in
this query model is denoted D⊕(f). The question then is whether Dcc(f ◦ XOR) can be far
less than D⊕(f). This question was answered by Hatami, Hossein and Lovett [HHL18] who
showed that the two are polynomially equivalent: Dcc(f ◦ XOR) ≥ D⊕(f)1/6. It is still open
whether Dcc(f ◦ XOR) ≥ Ω(D⊕(f)). In the case of randomized algorithms, even a polynomial
equivalence is unknown.

On the other hand, f and f ◦XOR can be seen to share a lot of mathematical structure. (The
quantities we speak of here are introduced in Section 3.3.) For instance, the Fourier sparsity
of f is equal to the rank of Mf◦XOR. Given this fact, Tsang, Wong, Xie and Zhang [TWXZ13]
tried to prove the LRC for XOR functions by trying to prove that D⊕(f) is at most polynomially
more than the logarithm of the Fourier sparsity of f . Along with the above stated result
of [HHL18] stating that D⊕(f) and Dcc(f ◦ XOR) are polynomially related, we can see that
the conjecture that D⊕(f) is at most polynomially more than the logarithm of the Fourier
sparsity of f is equivalent to the LRC for XOR functions. The LARC for the class of XOR
functions is not known to be equivalent to an analogous conjecture concerning parity decision
trees since there are no randomized lifting theorems for PDTs. The natural analogue would be
that R⊕ε (f) is bounded above by a polynomial in the ε-approximate sparsity, where R⊕ε (f) is
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the ε-error randomized PDT complexity of f and ε-approximate sparsity is defined akin to
ε-approximate rank. If one expects the randomized XOR lifting theorem to be true (as many
do), one must also expect the above conjecture and the LARC to share the same fate.

Apart from their relevance to communication complexity, PDTs have been studied for
their insights into the structure of Boolean functions. Green and Sanders [GS08] proved that
a Boolean function with small spectral norm can be written as a sum of a “few” indicator
functions of affine spaces, where “few” here is doubly exponential in the spectral norm. Shpilka,
Tal and Volk [STV17] improved this to singly exponential by showing that any function
f : {0, 1}n → {0, 1} with

∥∥∥f̂∥∥∥
1

= A has a parity decision tree with at most 2An2A leaves. They
hoped that this could be improved further to poly(n,A) leaves. This improvement, along with
the LRC, would follow should one prove the following conjecture of Tsang, Wong, Xie and
Zhang [TWXZ13]. The parity kill number of f is defined as

C⊕min(f) := min{co-dim(S)|S is an affine subspace on which f is constant}.

The conjecture (see Conjecture 3.3.9) is that the parity kill number of any Boolean function f
is bounded above by a polynomial in the logarithm of

∥∥∥f̂∥∥∥
1
. O’Donnell, Wright, Zhao, Sun

and Tan[OWZ+14] came up with a function showing that the degree of the polynomial in the
conjecture has to be at least 1.58.

We now move on to state the results from this part of the thesis.

1.2.2 Our Contributions: Separating Log-Approximate-Rank and Commu-
nication

Our major contribution is the conception of SINK as a counterexample to many conjectures
(see Figure 1.3). The details of this work are in Chapter 4. We give a quick run-through here.

SINK takes n bits of input, where n =
(m

2
)

for m ∈ N, and it outputs a single bit. We show
the following properties for SINK.

Theorem 1.2.1. Let F := SINK ◦ XOR and F̄ be the negation of F . We have the following
properties.

1.
∥∥∥ŜINK

∥∥∥
1

=
∥∥∥F̂∥∥∥

1
≤ m.

2. ∀ε > 0, rankε(F ) ≤ Oε(m4).

3. ∀ε > 0, rank+
ε (F ) ≤ Oε(m5).

4. ∀m > 2, C⊕min(SINK) = d2m/3e.

5. R⊕1/3(SINK) = Θ(m).

6. For some ε > 0, Rcc
1/3(F ) ≥ Ω(rank+

ε (F̄ )) ≥ Ω(m).
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The above theorem has the following consequences.

Refuting the Log-Approximate-Rank Conjecture (Conjecture 3.2.14): The function
F gives an exponential separation between Rcc

1/3(F ) and log rank1/3(F ). In fact, Rcc
1/3(F ) ≥

Ω(rank1/3(F )1/4).

Refuting the Strong Log-Approximate-Nonnegative-Rank Conjecture
(Conjecture 3.2.18): The function F gives an exponential separation between Rcc

1/3(F ) and
log rank+

1/3(F ). In fact, Rcc
1/3(F ) ≥ Ω(rank+

1/3(F )1/5).

Understanding Rank and Nonnegative Rank: The function F exhibits, for some constant
ε > 0, an exponential gap between log rankε(F̄ ) and log rank+

ε (F̄ ). Lee [Lee12] had asked
whether such a separation was possible. Furthermore, let M be the matrix that is close
to MF that witnesses its small approximate nonnegative rank. We thus get a matrix M

whose entries are from [0, ε]∪ [1− ε, 1] such that log rank+(M) is exponentially separated from
log rank+(J −M).

• We can slightly modify F to get a function F ′ such that log rankε(F ′) is exponentially
separated from the minimum of log rank+

ε (F ′) and log rank+
ε (F̄ ′).

Refuting Grolmusz’s Conjecture (Conjecture 3.2.28): The function F gives an expo-
nential separation between Rcc

1/3(F ) and log
∥∥∥F̂∥∥∥

1
. In fact, Rcc

1/3(F ) ≥ Ω(
∥∥∥F̂∥∥∥

1
).

Refuting the Parity Kill Number Conjecture (Conjecture 3.3.9): The function SINK
gives an exponential separation between C⊕min(SINK) and log

∥∥∥F̂∥∥∥
1
. In fact, C⊕min(F ) ≥ Ω(

∥∥∥F̂∥∥∥
1
).

• Note that this implies that the number of leaves needed by a parity decision tree
computing F is at least 22m/3. Hence [STV17] cannot improve their structure theorem
regarding functions with small spectral norm via their method. (See the end of the
previous subsection, on page 10.)

Implications for Quantum Communication Complexity: Since quantum communica-
tion complexity is also known to have logarithm of the approximate rank as a lower bound,
the above theorem leaves one of two possibilities. Either F has large quantum communication
complexity, and so the quantum version of the Log-Approximate-Rank Conjecture is false
(previously only a quadratic separation was known), or F has small quantum communication
complexity and would be the first example where quantum communication is exponentially bet-
ter than classical communication. Shortly after we published our work two teams of researchers,
Anshu, Boddu and Touchette [ABT19] and Sinha and de Wolf [SdW19], independently showed
that F has large quantum communication complexity by giving a lower bound of Ω(m1/3).

The idea behind the SINK function was that we wanted a non-trivial function with small
spectral norm. We noted that subcubes have small spectral norm, and by taking the union
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Log-Approximate-
Rank Conjec-
ture [LS09b]

Grolmusz’s Con-
jecture [Gro97]

Log-Rank Con-
jecture [LS88]

Strong Log-
Approximate-

Nonnegative-Rank
Conjecture [KMSY14]

Log-Rank Conjecture
for XOR Functions

Log-Approximate-
Nonnegative-Rank

Conjecture [KMSY14]

Protocol Compression
to Information Cost

Quantum-Log-Rank
Conjecture [LS09b]

Parity Kill Number
Conjecture [TWXZ13]

Lemma 3.2.29 [GL14]

[KMSY14][TWXZ13]

Figure 1.3: Implications between various interesting conjectures. We use the SINK function
to disprove the shaded conjectures. The Quantum-Log-Rank Conjecture was subsequently
falsified [ABT19, SdW19] using SINK, and the rest remain unresolved.

of disjoint subcubes we ended up with the function SINK. We note that a closely related
function has been looked at before in the context of analyzing the query complexity of graph
properties [LBvEB74]. The spectral norm of SINK remains small since the union is the same
as the sum, and the spectral norm is a norm and hence subadditive. The logarithm of the
spectral norm barely increases. It does not seem likely that the randomized communication
complexity also barely increases, and that is what we prove.

1.2.3 Towards Stronger Separations: Subspace Designs

Here we detail some questions that arose from our work above, and our progress in solving
them. The full details of this work are in Chapter 5.

To start with, we analyze the applicability of our methods above in order to tackle the
Log-Rank Conjecture or the Log-Approximate-Nonnegative-Rank Conjecture. The function
SINK was a sum of a few subcubes. Each subcube composed with XOR is easy to compute yet
SINK ◦XOR turns out to be hard for randomized communication. The Log-Approximate-Rank
Conjecture was not compatible with such a phenomenon. Similarly if we found a function that is
hard for deterministic communication while being a sum of functions that are deterministically
easy to compute, the Log-Rank Conjecture would also be refuted. However, as we show in
Theorem 5.1.1, a result of Yannakakis [Yan91] already implies that such a function is not
possible.

Having ruled out such an approach against the Log-Rank Conjecture, we turn to the
Log-Approximate-Nonnegative-Rank Conjecture. In this case, what would suffice to disprove
the conjecture is a function f such that (1) f−1(1) is a disjoint union of m1 subcubes, (2) f−1(0)
a disjoint union of m0 subcubes, and (3) F := f ◦ XOR is hard for randomized communication
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complexity (larger than polylog(m0,m1)). However such an F is also impossible. This uses a
result of Ehrenfeucht and Haussler [EH89] and we show this in Lemma 5.1.2.

However, we need not restrict ourselves to subcubes. Affine subspaces (which we refer
to simply as subspaces) of Fn2 are also as capable as subcubes for our purposes. Can we
use subspaces instead of subcubes to get better results? For instance, Lemma 5.1.2 is not
yet known for subspaces. That is, if f and its complement were both disjoint unions of a
small number of subspaces, does f ◦ XOR necessarily have small randomized communication
complexity?

The switch to subspaces has more potential than this. For instance, we show that it
can lead to stronger counterexamples of the Log-Approximate-Rank Conjecture, i.e. it can
further close the gap between approximate rank and randomized communication complexity
(the gap is quartic for SINK). The search for new refutations of the Log-Approximate-Rank
Conjecture is also important since any total function that shows an exponential separation
of between Randomized and Quantum Communication Complexity would have to refute the
Log-Approximate-Rank Conjecture.

In particular, the concept of subspace designs, previously used in coding theoretic applica-
tions by [GK16], turns out to be useful. It is a very well spread out combinatorial structure,
and we use it to come up with a set of small subspaces that forms a “robust hitting set” for all
large subspaces. We then show that computing whether a point is in this hitting set is hard
for randomized parity decision trees, and that there are many such hitting sets for which this
function has small approximate sparsity. This gives us Theorem 5.4.2 which shows that the
gap between approximate sparsity and RPDT complexity can be lessened to cubic. (O(n3)
approximate sparsity versus Ω(n) RPDT complexity.)

For such functions f , the function f ◦ XOR would have O(n3) approximate rank. If a
lifting theorem were to hold for the XOR gadget, this would translate to Ω(n) randomized
communication complexity. Conversely, if these functions do not witness a merely cubic gap
between approximate rank and randomized communication complexity (SINK witnessed a
quartic gap), then there is no lifting theorem for the XOR gadget.

Furthermore, the separation of O(logn) log-approximate-sparsity versus Ω(n)-randomized
parity decision tree complexity is the largest possible. Any function with o(logn) log-
approximate-sparsity has subpolynomial deterministic parity decision tree complexity.

We also provide a conjecture (Conjecture 5.5.1) that would suffice to prove the randomized
communication lower bound for the class of functions we are interested in. It is an intriguing
fundamental question about projections of distributions, and might be of independent interest.
Go to Chapter 5 for all the details!

This wraps up our results in communication complexity. We now take a look at what the
second part of this thesis deals with.
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1.3 First-order Non-smooth Convex Optimization

It is not rare in the world of computation to find oneself with access to a function that one
can easily compute at a point but that is too unwieldy to globally analyze. For some purposes
this might not be that big a limitation. We focus on the task of finding the minimum of a
convex function. To solve this one can start at any point, approximate the gradient, and step
in the opposite direction in order to get closer to the minimum of the function. This is a
classic algorithm known as gradient descent. It is quite natural to ask what the best method
to get close to the minimum is (see for instance [NY83, Nes04, Bub15]). Note that if we limit
ourselves to specifying points and querying the function values and gradients at the points, any
algorithm is essentially a query algorithm. The ‘nicer’ the function is promised to be, the more
efficient an algorithm one can find to accomplish the task. We will be dealing with functions
that are convex but are not necessarily smooth. There may be points at which the function
does not have a gradient. However since it is convex all points must have a subgradient and
we can query those. Since these are first-order derivatives that we are querying this task is
referred to as first-order non-smooth convex optimization.

To put it more formally, we have an unknown function f : Rn → R that is guaranteed
to be convex. Let x∗ be a point minimizing the value of f . The goal is to output a point
x that is ε-optimal, that is a point such that f(x) ≤ f(x∗) + ε. The only way we can gain
information about the function is through an oracle O that takes as input x ∈ Rn and outputs
the value f(x) and a subgradient of f at x. A subgradient is a vector m ∈ Rn such that for all
y ∈ Rn, f(y) ≥ f(x) + 〈m, y − x〉. We say that such a vector m is a subgradient of f at x, or
m ∈ ∇f(x). It is easy to see that the vector m must be equal to the gradient of f at x if the
gradient exists. We wish to make as few calls to the oracle as possible.

The complexity of this task may depend on how steep this function is and on how large the
region in which we want to optimize is. However, we may assume without loss of generality
that the function is 1-Lipschitz (this is a bound on the steepness of the function defined as
f(x)− f(y) ≤ 1 · ‖x− y‖ for all x, y) and that we are optimizing within the unit ball. Why
this assumption is without loss of generality is covered in more detail in Chapter 6.

Let det, rand and quantum refer to the deterministic, randomized and quantum query
models. We define, for M∈ {det, rand, quantum}, the set

AlgM,n,ε ={A is an M query algorithm making function value and subgradient queries |

∀ convex, 1-Lipschitz f : Rn → R, any subgradient oracle for f ,

A outputs an ε-optimal point of f within the unit ball}.

We then define the complexity measure CM(n, ε) = minA∈AlgM,n,ε
cost(A).

There has been a lot of prior work dealing with this task [NY83, Bub15, Nes18]. Of note
are two kinds of algorithms. There are dimension-dependent algorithms such as the center of
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gravity method [Bub15] that shows that Cdet(n, ε) ≤ O(n log(1/ε)), and there are dimension-
independent algorithms such as projected gradient descent, proposed by Cauchy in 1847,
which shows that Cdet(n, ε) ≤ O(1/ε2). This implies that when n ≥ Ω(ε−2/ log(1/ε)), gradient
descent has the better guarantee of the two algorithms. In fact it has been noted [NY83] that
for n ≥ Ω(1/ε2) one can show that there is no deterministic algorithm that can solve this task
better than gradient descent (i.e. Cdet(n, ε) ≥ Ω(1/ε2) when n ≥ 1/ε2). A similar statement is
also known for randomized algorithms [NY83], that there is no randomized algorithm that can
perform better than gradient descent. However the question of whether there is an algorithm
that outperforms gradient descent when n ≈ 1/ε2, say, was not known (although it was known
that gradient descent was still optimal upto log factors). The dimension at which gradient
descent is proved to be optimal upto constants was initially a large polynomial in 1/ε [NY83],
but has been pushed down to 1/ε4 in more recent works [WS17, BJL+19].

The quantum complexity of performing machine learning tasks similar to the one above
has been a hot topic in recent times [RSW+19, KP20]. The power that quantum computing
brings is quite apparent in applications such as computing gradients. By querying f at a
superposition of points near x and then applying the Quantum Fourier Transform, a quantum
algorithm is able to get an arbitrarily good approximation of the gradient of f at x with a
single query. However in our case the gradient and subgradients are provided by the oracle,
cancelling the advantage in that respect. The task of figuring out Cquantum(n, ε) is explicitly
asked as an open problem by Chakrabarti, Childs, Wi and Lu [CCLW20]. A lower bound of
Ω̃(min{1/ε,

√
n}) is implicit from their work.

1.3.1 Our Contributions

We prove a number of lower bounds, shown in Figures 1.4a and 1.4b.

Optimality of Gradient Descent

For randomized algorithms: We show that the optimality of gradient descent with respect
to randomized algorithms is true even when the dimension is as small as O(1/ε2). (The-
orem 6.1.3) The functions we use to show this have been used before [Nes18] to show an
Ω(ε−2/ log(1/ε)) lower bound against randomized algorithms (i.e. almost as optimal as gradient
descent). We do a more thorough analysis of this function and show that there is in fact a
lower bound of Ω(1/ε2). To the best of our knowledge this has not been observed before in
the literature. We believe our lower bound is also simpler than any previous lower bounds
that proved that Ω(1/ε2) queries are necessary in large dimensions.
For quantum algorithms: We show that quantum algorithms do not exhibit a speedup.
The best dimension-independent quantum algorithm we can hope for will still require Ω(1/ε2)
queries. (Theorem 6.1.5) This lower bound does not use the same functions as we use in the
randomized case. In fact, the quantum algorithm does get a quadratic speedup for those
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Figure 1.4: The plots shown above are with an arbitrary fixed value of ε. The axes are plotted in log-scale and the graphs
are for representational purposes. Note that log(ε−1/

√
n) = Ω(1) for n = 1/2ε2 and Ω(log(1/ε)) for n = 1/ε2−Ω(1).

(a) In this thesis, we show the above-plotted lower bounds on the complexity of first-order convex optimization for
randomized algorithms. The lower bounds shown are for the most part tight up to a constant factor. These lower
bounds were known in the literature, but with a log factor loss. The dashed portion shows what lower bounds were
previously known that are tight up to a constant factor: [BJL+19] showed a lower bound of Ω(1/ε2) when n ≥ Õ(1/ε4).
(b) In this thesis, we show the above-plotted lower bounds on the complexity of first-order convex optimization for
quantum algorithms. In particular, we show that there is no dimension-independent quantum algorithm that can
outperform the deterministic algorithm of Projected Gradient Descent. The dashed lines show the lower bounds prior
to our work: A lower bound of Ω̃(min{1/ε,

√
n}) is implicit in [CCLW20].
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functions. For the quantum query lower bound, we turn to a class of functions introduced
by Woodworth and Srebro [WS17] in a lower bound against randomized algorithms. This
class of functions was improved upon by Bubeck, Jiang, Lee, Li and Sidford [BJL+19] in a
lower bound against the number of rounds needed in a “highly parallel” query algorithm. Such
query algorithms allow one to make polynomially many parallel queries in a single round.
Using some of their constructions and a ‘hybrid argument’ we are able to show a quantum
lower bound. However this lower bound is on functions which have dimension Θ̃(1/ε4). It is
still open whether we can show the same lower bound for functions of dimension O(1/ε2) or
whether quantum algorithms have an advantage in this regime.

Dependence on ε when the dimension is small

Convex optimization algorithms such as the center of gravity method exhibit a log(1/ε)
dependence on ε when the dimension is small. We show that even quantum algorithms cannot
improve on this dependence on ε. We give a family of functions with dimension 1 that requires
Ω(log(1/ε)) queries to minimize (Corollary 6.5.7). Regarding the dependence on both n and ε,
our dimension-independent results show that when n ≤ 1/ε4 we have an Ω̃(

√
n) lower bound

(Theorem 6.5.1). We are able to say a little more, that when n ≤ 1/ε2 we have a lower bound
of Ω̃(

√
n log(ε−1/

√
n)) (Theorem 6.5.15).

1.4 Organization

• Chapter 2: Models of Computation
Here we introduce the notions of deterministic and randomized communication complexity.
We then introduce query complexity with a focus on parity decision trees. Finally we
introduce the basics of quantum computation and the quantum query model, and touch
upon the quantum communication model.

• Chapter 3: Complexity Measures and Lower Bounds
This chapter deals with measures that one comes across in the analysis of communication
and query complexity. Many of these measures such as the approximate ranks, corruption,
approximate sparsity and parity kill number are central to the subsequent chapters.
Measures such as the γ2 norms do not make an appearance in subsequent chapters
but they play an important role in relating various measures to each other. Note that
this chapter has very little original content and is not to be thought of as adding to the
contributions of this thesis.

• Chapter 4: Refuting the Log-Approximate-Rank Conjecture
Here we present the main result of this thesis, that the Log-Approximate-Rank Conjecture
and a multitude of similar conjectures are false.
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• Chapter 5: Extensions based on SINK: Subspace Designs
This chapter primarily contains a class of functions that strengthens the separation
between log-approximate-sparsity and randomized parity decision tree complexity from
the previous chapter. It uses combinatorial objects known as subspace designs and raises
interesting questions about them.

• Chapter 6: Quantum First-Order Convex Optimization
In this chapter we analyze the quantum complexity of the task of first-order convex
optimization, with the highlight being that quantum algorithms do not provide any
speedup over gradient descent.

• Chapter 7: Some Open Problems
We end the thesis by collecting a few open questions that arose from our work and a few
intriguing questions that we were not able to answer.



Chapter 2

Models of Computation

In this chapter we formally define the models of computation that we will be considering:
communication protocols, parity decision trees, and quantum query algorithms.

2.1 Communication Complexity

We start by formalizing a simple notion of communication. A communicating party commu-
nicates some string that depends on the data that the party possesses. This data includes
the party’s input and the communication already received by the party. An algorithm that
multiple communicating parties can use towards solving a task is called a communication
protocol. Since we only want to analyze the amount of communication that is needed, we
assume that all parties have unbounded computational power. Hence the protocol does not
concern itself with how a player goes about computing the string that is to be communicated.
The player only needs to know what function they must use to compute the string.

In our model of communication the protocol dictates which player will communicate and
what function of their data they will communicate at any given moment during the execution
of the protocol. The protocol has a natural representation as a tree.

Definition 2.1.1 (Deterministic 2-Party Communication Protocol). Let Alice and Bob be two
parties trying to compute a function f : X × Y → {0, 1}. Alice and Bob have inputs from X
and Y respectively. A communication protocol Π for the two parties is a binary tree with the
following properties.

• Every internal node v is labeled with either Alice or Bob. Each Alice node v is associated
with its Alice function fv : X → {0, 1} and each Bob node v is associated with its Bob
function fv : Y → {0, 1}.

• Each leaf ` is labeled with an output o` ∈ {0, 1}.

When Alice and Bob have inputs x and y respectively, the protocol executes as follows.

19
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• Starting at the root, the party whose node it is computes the associated function at that
node. The output of the function is communicated to the other party. If the output is 0,
both parties move to the left child of the node. If it is 1, both parties move to the right
child of the node.

• Upon reaching a leaf `, the output of the protocol is o`.

The path that the parties take is called the transcript of the protocol and the output of the
protocol is denoted Π(x, y).

The maximum depth of a leaf (equivalently the length of the longest transcript) is the cost
of the protocol, denoted c(Π).

We say that a protocol Π computes the function F if ∀x, y Π(x, y) = F (x, y).

Definition 2.1.2 (Deterministic Communication Complexity). The deterministic communica-
tion complexity of a function F , denoted Dcc(F ), is the minimum value, among all deterministic
communication protocols Π computing F , of c(Π).

Another way to view this model is that it is a decision tree where the allowed queries are arbitrary functions
of Alice’s input and arbitrary functions of Bob’s input.

For a leaf ` of the protocol, let f1, f2, . . . , fi be the functions associated with the Alice
nodes on the path to `, and g1, g2, . . . , gk be the functions associated with the Bob nodes on
the path to `. In order to reach `, let a1, a2, . . . , ai be the outputs required from f1, . . . , fi, and
let b1, b2, . . . , bj be the outputs required from g1, . . . , gj . It is easy to observe the following.

Observation 2.1.3 (Leaves as Combinatorial Rectangles). Let ` be the leaf described above.

• Every input (x, y) on which the protocol reaches the leaf ` must satisfy
∧
t∈[i](ft(x) =

at) ∧
∧
t∈[j](gt(y) = bt).

• On every input (x, y) that satisfies
∧
t∈[i](ft(x) = at) ∧

∧
t∈[j](gt(y) = bt), the protocol

must reach the leaf `.

In other words, the set of inputs such that the transcript of Π ends at ` is exactlyx ∈ X
∣∣∣∣∣∣
∧
t∈[i]

(ft(x) = at)

×
y ∈ Y

∣∣∣∣∣∣
∧
t∈[j]

(gt(y) = bt)

 .
Sets of the form A×B, where A ⊆ X and B ⊆ Y , are called combinatorial rectangles. We

will refer to them as rectangles.
Since every input must reach a unique leaf, it follows that the set X×Y is in fact partitioned

into combinatorial rectangles, with one combinatorial rectangle for each leaf of the protocol.
For a function F we consider its communication matrix, denoted MF , defined as the matrix

whose rows are indexed by X and columns indexed by Y, and whose (x, y)th entry is F (x, y).
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011
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Figure 2.1:
(a) A Communication Protocol of Cost 3. The functions computed at each node are:
B1: 1 iff y1 = 1.
A1: 1 iff x /∈ {000, 001, 010}.
B2: 1 iff y2 = 1.
A2: 1 iff x ∈ {101, 110, 111}.
B3: 1 iff y = 111.
B4: 1 iff y = 110.
A3: 1 iff x ∈ {001, 010, 011, 110}.
(b) The communication matrix of the function computed by the protocol in Figure 2.1a. The
inputs reaching the left child of node A3 are highlighted.
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If Π is a cost-c protocol that computes F , then the entries of MF can be partitioned into
at most 2c monochromatic rectangles. See Figure 2.1b for the communication matrix of the
function computed by the protocol in Figure 2.1a.

In the case of randomized protocols, there are two natural models to consider. One is that
of communication with private randomness and the other with public randomness.

Definition 2.1.4 (2-Party Communication Protocol with Private Randomness). A private-
randomness communication protocol Π for two parties Alice and Bob is specified by the
following.

• Two distributions DA and DB with supports SA and SB respectively.

• A binary tree with the following properties.

– Every internal node v is labeled with either Alice or Bob. Each Alice node v is
associated with its Alice function fv : SA × X → {0, 1}. Each Bob node v is
associated with its Bob function fv : SB × Y → {0, 1}.

– Each leaf ` is labeled with an output o` ∈ {0, 1}.

At the start of the execution of the protocol, Alice is given a sample rA distributed according
to DA and Bob is given an independent sample rB distributed according to DB. When Alice
and Bob have inputs x and y respectively, the protocol executes as follows.

• Starting at the root, the party whose node it is computes the associated function at that
node. (If the party is Alice, it is computed with rA and x as inputs. If Bob, rB and y.)
The output of the function is communicated to the other party. If the output is 0, both
parties move to the left child of the node. If it is 1, both parties move to the right child
of the node.

• Upon reaching a leaf `, the output of the protocol is o`.

The path that the parties take is called the transcript of the protocol and the output of the
protocol is denoted Π(x, y). Note that both the path and the output are random variables.

The maximum depth of a leaf (equivalently the length of the longest transcript) is the cost
of the protocol, denoted c(Π).

We say that a protocol Π computes the function F to within error ε if ∀x, y Pr[Π(x, y) =
F (x, y)] ≥ 1− ε.

Definition 2.1.5 (Private-Randomness ε-error Randomized Communication Complexity).
The private-randomness ε-error randomized communication complexity of a function F , denoted
Rcc

pri,ε(F ), is the minimum value, among all private-randomness communication protocols Π
computing F to within error ε, of c(Π).
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We may sometimes omit ε or just say bounded-error instead of ε-error. In both these cases,
we assume ε is 1/3.

For a leaf ` of the protocol, let f1, f2, . . . , fi be the functions associated with the Alice
nodes on the path to `, and g1, g2, . . . , gk be the functions associated with the Bob nodes on
the path to `. In order to reach `, let a1, a2, . . . , ai be the outputs required from f1, . . . , fi, and
let b1, b2, . . . , bj be the outputs required from g1, . . . , gj . It is easy to observe the following.

Observation 2.1.6 (Leaves as Rank-1 Matrices). Let ` be the leaf described above. We can
then characterize the probability that an input (x, y) reaches the leaf `.

Pr[(x, y) reaches `] = Pr
rA∼DA,rB∼DB

∧
t∈[i]

(ft(rA, x) = at) ∧
∧
t∈[j]

(gt(rB, y) = bt)

 .
Since rA and rB are sampled independently, this simplifies to

Pr
rB∼DB

∧
t∈[i]

(ft(rA, x) = at)

 · Pr
rB∼DB

 ∧
t∈[j]

(gt(rB, y) = bt)

 .
In other words, let M` be the matrix that specifies, for a row indexed by x and column indexed
by y, the probability that (x, y) reaches `. Then M` is a rank-1 matrix since the (x, y)th entry
is of the form px · qy.

We now turn to the model of public-randomness communication protocols.

Definition 2.1.7 (2-Party Communication Protocol with Public Randomness). A public-
randomness communication protocol Π for two parties Alice and Bob is a distribution over
deterministic communication protocols.

The protocol executes as follows when Alice and Bob are given inputs x and y. A deter-
ministic communication protocol Π′ is sampled from Π. The protocol Π′ is then executed on
input (x, y). The output of Π is the output of Π′. The output of Π is a random variable.

The cost of the protocol, denoted c(Π), is the maximum of the costs of the deterministic
protocols in the support of Π.

Definition 2.1.8 (Public-Randomness ε-error Randomized Communication Complexity). The
public-randomness ε-error randomized communication complexity of a function F , denoted
Rcc
ε (F ), is the minimum value, among all public-randomness communication protocols Π

computing F to within error ε, of c(Π).

2.2 Parity Decision Tree Complexity

The parity decision tree complexity of a function f measures the number of parities of the
input one needs to query in order to compute f on the input. As usual, the query algorithm is
best represented as a tree.
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Definition 2.2.1 (Parity Decision Trees). Let f : {0, 1}n → {0, 1} be a function we want to
compute. A parity decision tree T is a binary tree in which every internal node is labeled with
a set S ⊆ [n]. The leaves are labeled with outputs from {0, 1}.

On an input x, the execution of the query algorithm represented by T proceeds as follows.
We start with the current node being the root.

• Let S be the set associated with the current node. Compute ⊕i∈Sxi. If it is 0, go to the
left child. If it is 1, go to the right child.

• When you reach a leaf, output the label of the leaf.

The output of the parity decision tree is denoted T (x). The cost of the tree, c(T ), is the
maximum depth of a leaf in the tree.

We say that T computes a function f if for all x ∈ {0, 1}n, T (x) = f(x).
To analyze the mathematical structures that arise from parity decision trees, let us view

the input as coming from the vector space Fn2 instead of thinking of it as {0, 1}n. We will refer
to the F2-sum as ⊕.

For a leaf ` of a parity decision tree, let S1, S2, . . . , Si be the sets associated with the nodes
on the path to `, and let a1, a2, . . . , ai be the outputs required from ⊕S1 , . . . ,⊕Si to reach `.
It is easy to make the following observation.

Observation 2.2.2 (Leaves as Affine Subspaces). Let ` be the leaf described above.

• Every input x on which the tree reaches the leaf ` must satisfy
∧
t∈[i](⊕j∈Stxj = at).

• On every input x that satisfies
∧
t∈[i](⊕j∈Stxj = at), the tree must reach the leaf `.

In other words, the set of inputs that reach ` is exactly the F2 affine subspace specified by the
linear equations

∀t ∈ [i], ⊕j∈St xj = at.

To get more comfortable with this model, let us see what happens when we make a query. Suppose the
query at the root was x1 ⊕ x2 and the query returned 1. The subfunction that we are now left to compute
is no longer a total function with domain {0, 1}n. However, it is still a total function with its domain
being a subspace of Fn2 of dimension n− 1, and is equivalent to a total function on n− 1 bits.

Definition 2.2.3 (Randomized Parity Decision Tree). A randomized parity decision tree T is
a distribution over deterministic parity decision trees.

The tree executes as follows when given input x. A deterministic tree T ′ is sampled from
T . The protocol T ′ is then executed on input x. The output of T is the output of T ′. The
output of T is a random variable.

The cost of the protocol, denoted c(T ), is the maximum of the costs of the deterministic
trees in the support of T .
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We say that a randomized parity decision tree T computes the function f to within error
probability ε if ∀x Pr[T (x) = f(x)] ≥ 1− ε.

Definition 2.2.4 (ε-error Randomized Parity Decision Tree Complexity). The ε-error ran-
domized communication complexity of a function f , denoted R⊕ε (f), is the minimum value,
among all randomized parity decision trees T computing f to within error ε, of c(T ).

2.3 Quantum Query and Communication Models

We now introduce the main concepts behind quantum computation. A more thorough
introduction can be found in [NC16, Wol19]. Quantum data are stored in registers. A register
is associated with a number of dimensions, which is also the number of possible outputs we can
get from the register. A qubit is a register of dimension 2. The datum in a register is called
the quantum state of the register. The state of the register is either pure, or it is entangled
with the states of other registers. In what follows [d] represents the set {0, 1, . . . , d− 1}.
A pure state: Description and notation

A pure state in a d-dimensional register is represented by a unit vector in Cd. If the register
is called R, and the vector v, this state is written as |v〉R. There are d canonical mutually
orthogonal unit vectors, or “axis” vectors, that form a basis for the space Cd. These are usually
referred to as e1, e2, · · · , ed. We use |0〉R, |1〉R, . . . , |d− 1〉R to refer to these states. The vector
(1/
√

2, 1/
√

2) ∈ C2 is represented as |0〉R+|1〉R√
2 , or

(
|0〉+|1〉√

2

)
R

. It is a superposition of the states
|0〉R and |1〉R. This is more often written as ‘R is in the state |0〉+|1〉√

2 ’, since the register is
implicit.
Looking at your quantum data: Measurement

So you have been given a d-dimensional register R which is in some state, say |v〉R. What
do you see when you peek into the register? Let |v〉R = ∑

i∈[d] αi|i〉R. With probability
|αi|2, the register will change its state to |i〉R, and i is the output that we will get from the
measurement. (We know that since v is a unit vector, ∑i∈[d]|αi|2 = 1.)
Adding more data: Multiple registers

Consider the scenario where you have two registers: a d1-dimensional register R1 and a
d2-dimensional register R2. We can think of the state of these two registers combined, yielding
a register R of dimension d = d1d2. The canonical basis states that R can be in are, for each
i1 ∈ [d1], i2 ∈ [d2], the state where R1 is in state |i1〉R1 and R2 is in state |i2〉R2 . In general, if
R1 is in a pure state |v1〉R1 and R2 is in a pure state |v2〉R2 , then the state of R is |v1 ⊗ v2〉R.
This is also written as |v1〉R1 |v2〉R2 .

Hence we can form a set of basis states of R as {|i〉R1 |j〉R2}i∈[d1],j∈[d2]. It follows that
every pure state of R is of the form ∑

αi,j |i〉R1 |j〉R2 . It is also common to write this as∑
αi,j |i〉|j〉 or even ∑αij |ij〉, where it is implicit that the registers are R1 and R2, with the

R1 component being written before the R2 component. States of the form |v1〉R1 |v2〉R2 are
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called separable, since they can be separated into two registers holding pure states. However,
the state 1√

2(|00〉+ |11〉) is not a separable state. In this state, the registers R1 and R2 do not
hold pure states and are instead entangled with each other which, as we will see shortly, can
lead to weird phenomena when they are measured. This weirdness was famously elaborated on
by Einstein, Podolsky and Rosen [EPR35] and the above state is referred to as an EPR pair.
Manipulating your quantum data

The way you change the state of your register is really simple: rotations. Rotations in
a d-dimensional space are easy to characterise. Choose d mutually orthogonal unit vectors
b0, b1, . . . , bd−1. Each choice corresponds to a different rotation. The way your state changes is
as follows.

• For each i ∈ [d], |i〉 changes to |bi〉.

• For a vector v = ∑
i∈[d] αi|i〉, |v〉 changes to ∑i∈[d] αi|bi〉.

Mathematically all this is simply characterized by unitary transformations. Let U be a d× d
unitary matrix. U maps the state v to the state Uv.

Consider the register R considered previously (made up of registers R1 and R2). We can
choose our unitary so that we can transform |00〉 to any state |v〉R of our choosing, including
the EPR pair.
Measuring and manipulating an entangled register

Suppose we had access only to register R1 from the above example. Even though it is
entangled with R2 which we do not have access to, we can still measure and apply unitaries to
R1. Since register R contains a pure state, i.e. a unit vector in Cd1 ⊗ Cd2 , it can be written
as v = ∑

i∈[d1],j∈[d2] αi,j |ij〉 = ∑
i∈[d1]|i〉|vi〉 where each vi is a vector (not necessarily a unit

vector) in Cd2 . Upon measuring R1, the state of R collapses to |i〉|v′i〉, where v′i is vi normalized,
with probability ||vi||2.

Applying a d1-dimensional unitary U to R1 no longer makes sense as previously described
because the state of R1 is no longer a d1-dimensional vector. Such an operation can nevertheless
be performed, and the way to interpret this operation is as applying the unitary U ⊗ I to the
state of R, where I is the d2-dimensional identity matrix. The result of doing this operation
to the state ∑i∈[d1]|i〉|vi〉 is the state ∑i∈[d1](U |i〉)|vi〉.

Let us now use the model above to work out one of the strangenesses that Einstein,
Podolsky and Rosen had noted. Let R1 and R2 be qubits that are in the entangled state
|00〉+|11〉√

2 . If we were to measure the qubit R1, we would get |0〉 with probability 1
2 and |1〉 with

probability 1
2 . In the former case R2 would collapse to |0〉 and in the latter case R2 would

collapse to |1〉. Now instead, let us apply the Hadamard unitary to R1. The Hadamard unitary
is defined as

|0〉 7→ |0〉+ |1〉√
2

, |1〉 7→ |0〉 − |1〉√
2

.
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This transforms our state to

(|0〉+ |1〉)|0〉+ (|0〉 − |1〉)|1〉
2 = |0〉(|0〉+ |1〉) + |1〉(|0〉 − |1〉)

2 .

Now upon measuring R1, we would still get |0〉 with probability 1
2 and |1〉 with probability

1
2 . However in the former case R2 would collapse to |0〉+|1〉√

2 , and in the latter case R2 would
collapse to |0〉−|1〉√

2 . Recall that if we had not applied the Hadamard unitary, R2 would have
collapsed to either |0〉 or |1〉. That we could influence the state of R2 in such a manner
by performing operations on R1 even if R1 and R2 were astronomically far apart was what
unsettled Einstein, Podolsky and Rosen.
What does quantum computation look like?

A typical scenario for a quantum computational task would be something like the following.
You want to compute a function f : [2n]→ {0, 1}. You are given a qubit ans. You are given
a 2n-dimensional register input. You are also allowed to use an auxiliary register aux of
a dimension of your choosing, say k. The initial state is |0〉ans|i〉input|0〉aux where i ∈ [2n].
You want to come up with a unitary U of dimension 2 · 2n · k such that for all i ∈ [2n],
U |0〉ans|i〉input|0〉aux is a state which, on measuring the ans register, returns f(i) with high
probability.

Note that it is easy to come up with such a unitary. One could choose any unitary that
maps |0〉ans|i〉input|0〉aux to |0〉ans|i〉input|0〉aux for all i ∈ f−1(0) and |0〉ans|i〉input|0〉aux to
|1〉ans|i〉input|0〉aux for all other is. However, being able to use arbitrary unitaries is akin to
allowing a circuit model where each gate computes an arbitrary function. Circuits built with
just two bit NAND gates are more representative of computation.

Similarly here, we would want to only use unitaries and registers that are easy to handle.
For this purpose, we restrict ourselves to using qubits (2-dimensional registers) and to using
unitaries that act on at most 2 qubits at a time. For a register made up of 3 qubits, we
concisely denote |0〉|1〉|0〉 as |010〉. Similarly n-bit strings index the basis vectors of a register
made up of n qubits. The operations allowed are

• For any qubit, one can apply any unitary transformation.

• For any two qubits, one can apply the CNOT gate, defined as

|00〉 7→ |00〉, |01〉 7→ |01〉, |10〉 7→ |11〉, |11〉 7→ |10〉.

The above transformations are complete, in the sense that any unitary can be obtained
by composing the above unitaries. Quantum circuit complexity asks for the minimum k

such that by composing k of the above unitaries, one gets a unitary U that solves f in the
sense mentioned a few paragraphs above. Note that the gate set above is uncountably large
and hence impractical. We instead satisfy ourselves with being able to obtain arbitrarily
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good approximations to unitaries, and it is possible to do so with just the following two
operations [Kit97]!

• For any qubit, one can apply the Hadamard gate.

• For any two qubits, one can apply the C-P(i) gate, defined as

|00〉 7→ |00〉, |01〉 7→ |01〉, |10〉 7→ |10〉, |11〉 7→ i|11〉.

However we shall not concern ourselves with these details as we will be dealing with query
algorithms and communication protocols, both of which allow unbounded computation. Even
with these details put aside, the model of quantum computation does seem far removed from
other models. It may even seem a bit finicky at times, caring about how you did a certain
computation. Was the answer register entangled with the ancillary registers? Perhaps your
algorithm does place, for each input, the correct answers in the answer register, but are the
coefficients of each of the answer states the same? These questions do come up and are
important in order to make sure that different algorithms play together well and can be used
as subroutines.

But luckily these issues are not brought up in our use cases. If we only consider quantum
computations that are computing classical functions, we do not need to care about how the
answer is being computed. This statement is encapsulated by the statement BQPBQP = BQP
and is referred to as the BQP Subroutine Theorem [BBBV97]. They show that one can
run a subroutine that computes a function, perform error reduction, copy the output of the
subroutine (which is almost a basis state thanks to the error reduction), and then ‘reverse
the computation’. If we had not copied the output, we would end up with the initial state
since we reversed the computation. If the output that was copied was a basis state, the output
register would not be entangled with the other qubits and we would end up with the output
in the output register and the rest of the qubits would be as they were before the computation
started. Note that this is the ideal situation since it is exactly how an oracle would work. In
our case where the output is nearly a basis state, we end up with a quantum state that is
nearly the ideal state, which is good enough. Here too error reduction involves running the
algorithm ‘many times’ and taking the majority (‘many times’ being logarithmic in the error
that we want to amplify it to).

2.3.1 Quantum Query Algorithms

This probably goes without saying, but quantum query algorithms are to quantum algorithms
as classical query algorithms are to classical algorithms. In a classical query algorithm, arbitrary
operations are allowed between queries. Let us assume that to make a query the algorithm
writes down the index to be queried at a specific location, and a query oracle returns the result
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of the query at a specific location. All the oracle does is it houses a string x ∈ Σn and when
invoked it returns the value xi.

In the case of a quantum query algorithm, we would assume we have an n-dimensional
register in and a |Σ|-dimensional register out. But for simplicity, and so that it has a better
interplay with the rest of the registers, we take in to be a register made up of dlogne qubits,
and out to be a register made up of dlog |Σ|e qubits. We require that the oracle also be a
unitary so that it makes quantum mechanical sense. The behaviour of the oracle unitary Ox
can be specified as follows on the registers in and out.

∀i ∈ {0, 1}dlogne, a ∈ {0, 1}dlog |Σ|e Ox|i〉in|a〉out = |i〉in|xi ⊕ a〉out,

where ⊕ is the bitwise XOR and xi is the dlog |Σ|e-bit string representing the actual value in
Σ for i ∈ [n] and is the all-0 string otherwise. Since each basis state is mapped to a unique
basis state, this map is unitary.

Between the queries, the quantum query algorithm can do any operation, and this can be
encapsulated by a single unitary. Hence every q-query quantum algorithm can be represented as
a sequence of unitaries acting on registers in, out and anc (for ancillary). The algorithm chooses
how many qubits anc is made up of beforehand. It starts in the state |s0〉 = |0〉in|0〉out|0〉anc.
It then applies the unitaries U0, Ox, U1, Ox, · · · , Uq−1, Ox, Uq. The state after k queries is
|sk〉 = OxUk−1|sk−1〉. The final state is |sfinal〉 = Uq|sq〉. Certain qubits (specified by the
quantum query algorithm) of the state |sfinal〉 are then measured to get the output of the
quantum query algorithm.

Let us now play with this to make some simple statements about learning bitstrings with
quantum bit queries.

Lemma 2.3.1. There is no 1-query quantum algorithm that makes queries to the bits of the
string x1x2 and learns x1x2 perfectly.

Proof. Any 1-query quantum algorithm must be of the form U1OxU0|0〉. Let the state
U0|0〉 = α1|1〉in|φ1〉+α2|2〉in|φ2〉 where φ1, φ2 are unit vectors (hence |α1|2 + |α2|2 = 1). Let us
denote by |φ00〉, |φ01〉, |φ10〉 and |φ11〉 the states after the oracle call (i.e., OxU0|0〉) depending
on the value of x1x2. In order to perfectly output x1x2, U1|φx1x2〉 must have |x1x2〉 in the
output register, implying that each of the four states must be mutually orthogonal. Hence
|φx1x2〉 themselves must be mutually orthogonal.

Note that Ox|1〉in|ψ〉 = Oy|1〉in|ψ〉 if x1 = y1 regardless of ψ. Let c1 be the value of
〈Ox|1〉in|φ1〉, Oy|1〉in|φ1〉〉 when x1 = 0 and y1 = 1. Similarly define c2 to be the value of
〈Ox|2〉in|φ2〉, Oy|2〉in|φ2〉〉 when x2 = 0 and y2 = 1. Note that c1 and c2 have magnitude at
most 1.
〈φ00|φ01〉 = |α1|2 + |α2|2c2, which has norm at least |α1|2 − |α2|2. Similarly 〈φ00|φ10〉 has

norm at least −|α1|2 + |α2|2 + |α3|2. For these to both be 0, |α1|2 = |α2|2 and c1 = c2 = −1.
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Finally, 〈φ10|φ01〉 = |α1|2c1 + |α2|2c2, which will be a real number smaller than 0. Hence they
cannot all be mutually orthogonal.

The lesson here is not that quantum queries are useless. Continuing this analysis would have shown us
that there is a 1-query algorithm that computes x1 ⊕ x2.
The above argument is also robust. We can show that the states can’t even be mutually nearly orthogonal,
hence giving us a 2-query lower bound even on learning x1x2 with worst-case error probability 0.01, say.

Quantum query complexity has been characterized with various measures, and these
characterizations have led to strong results, such as this strong direct product theorem by Lee
and Roland.

Theorem 2.3.2 (Theorems 3.3 and 4.2, [LR13]). Let ε > 0 be a constant. For any function
f , any error parameter 2/3 ≤ δ ≤ 1, and any integer k > 0, we have

Q1−δk/2(f (k)) ≥ Ω(k ln(3δ/2)Qε(f))

where f (k) is k independent copies of the function f and Qε(f) is the minimum number of
queries required for a quantum query algorithm computing f with worst-case error at most ε.

We can now use this theorem in order to prove a statement about learning bitstrings with
even a small probability of success. This will be useful for us in Section 6.5.

Lemma 2.3.3. Let A be an m-query quantum query algorithm making bit queries to a bitstring
z ∈ {0, 1}n satisfying the following condition.

E
z∈{0,1}n

[A outputs z] ≥ 0.9−n/4.

Then m ≥ Ω(n).

Proof. We start by using the strong direct product theorem. Learning an n-bit string is n/2
copies of learning a 2-bit string. Setting δ = 0.9, the strong direct product theorem tells us that
if there is an m-query algorithm A such that for all z ∈ {0, 1}n, Pr[A outputs z] ≥ 0.9−n/4,
then m ≥ Ω(n).

We now use a simple argument to show that if there is an m-query algorithm A satisfying
Ez∈{0,1}n [A outputs z] ≥ 0.9−n/4, then there is an m-query algorithm A′ such that for all
z ∈ {0, 1}n, Pr[A outputs z] ≥ 0.9−n/4. The algorithm A′ proceeds as follows. Sample
uniformly at random an n-bit string r. Insert the unitary |i〉in|b〉out 7→ |i〉in|b ⊕ ri〉out after
each oracle call of A. Now running A′ on input z will exactly mimic running A on input
z ⊕ r. A′ then takes the output of A and outputs its bitwise xor with r. By assumption, A
would have output z ⊕ r with probability at least 0.9−n/4 and hence A′ would output z with
probability at least 0.9−n/4.
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2.3.2 Quantum Communication Complexity

This subsection can be skipped by most readers, it is mostly technical details that will only be relevant to
Section 3.6, which is not really central to this thesis.

A quantum communication protocol looks like the following. Alice and Bob are given x

and y respectively and are trying to compute f(x, y) where f : {0, 1}n × {0, 1}n → {0, 1}.
Alice has a register A of a dimension of her choosing, Bob has a register B of a dimension of
his choosing, and Alice has a qubit comm.

Looking at her input, Alice chooses unitaries U0, U2, · · · , U2k that act on the register made
of A and comm. Looking at his input, Bob chooses unitaries U1, U3, · · · , U2k+1 that act on the
register made of B and comm. Alice proceeds to apply U0, send comm to Bob, who applies
U1 and sends comm back to Alice and so on.

After applying the unitaries, they get

(IA ⊗ U2k+1)(U2k ⊗ IB) . . . (IA ⊗ U1)(U0 ⊗ IB)|0〉A|0〉comm|0〉B.

They measure comm and get the output of the protocol. The cost of the protocol is 2k + 1.
Note that Alice’s unitaries could depend on the input x, and similarly Bob’s unitaries could

depend on the input y. However this is not necessary in the definition of a protocol. Alice
could have been given x in an n-qubit register Ain, and Bob could have been given y in an
n-qubit register Bin. Then Alice could have chosen a universal unitary acting on Ain, A and
comm that looks at the value in Ain and based on that performs a unitary on A and comm.
Simulating a classical protocol

The protocol described above could be called a deterministic protocol, since given inputs x
and y its final state is determined. However, the measurement at the end gives the output as
a random variable. This is akin to how in a randomized protocol, given x and y a distribution
on transcripts is determined. We can then sample from the distribution to get the output as a
random variable. Indeed we describe a quantum protocol that simulates a cost-c private coin
randomized protocol (assuming a finite sample space for the randomized protocol) in which
the players alternate in sending messages of length 1 bit and the last bit of the transcript is
the output. We also assume all leaves are at depth c, we insert dummy communication nodes
to make sure of this.

We can always assume that the sample space is finite. It is not hard to see that any private coin randomized
protocol can be simulated by a protocol with the following condition: A player can toss at most one coin
every time they need to send a bit. The bias of this coin may be hard to compute, but the players are
computationally unbounded.

Let Alice’s private randomness be a sample from a distribution DA and Bob’s be from a
distribution DB . Alice has a register Arand initialized to ∑r∈supp(DA)

√
DA(r)|r〉, and similarly

Bob has his register.
Alice has a c-qubit register Atranscript initialized to |0〉 and Bob has a similar register.
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The classical protocol is simulated as follows. Let the transcript of the protocol, conditioned
on r ∼ DA, r′ ∼ DB be t(x, y, r, r′). The state that the quantum protocol will have after
simulating i bits of classical communication will be

|x〉Ain |y〉Bin
∑

r∈supp(DA)

∑
r′∈supp(DB)

(√
DA(r)|r〉Arand

√
DB(r′)|r′〉Brand

|t(x, y, r, r′)≤i0c−i〉Atranscipt |t(x, y, r, r′)≤i0c−i〉Btranscipt
)
|0〉comm.

We now see how to simulate the next bit of the protocol. Assume it is Alice’s turn to
send a bit. Alice’s unitary will operate on the first i qubits of Atranscript, on the registers
Ain, Arand and on the register comm in order to set the state of comm to be the bit that
Alice would have sent. This state of comm is also copied, via a C-NOT gate, to the i+ 1th
qubit of Atranscript. Alice then sends comm to Bob, who swaps comm and the i+ 1th qubit of
Btranscript. At this point the state of the quantum protocol is as it should be after simulating
i+ 1 bits of communication.

For the last bit of the simulation, comm is not swapped with the transcript register.
comm contains the kth qubit of Atranscript. At this point the state is |0〉comm|v0〉the rest +
|1〉comm|v1〉the rest, where the square of the length of v0 is

∑
r∈supp(DA),r′∈supp(DB) such that t(x,y,r,r′)c=0

DA(r)DB(r′).

Thus when measuring comm, |0〉 is measured with the probability that the classical protocol
outputs 0.
Allowing pre-entangled qubits

Public coin protocols cannot be simulated this way. However, if Alice and Bob share a
k + k qubit register set to 1

2k/2
∑
r∈{0,1}k |r〉|r〉 with the first k qubits with Alice and the latter

k with Bob, then they can measure these registers and get k bits uniformly at random, with
the guarantee that Alice’s k bits are the same as Bob’s k bits. In this model, public coin
protocols can also be easily simulated. However, the power of entanglement may be more
than just sharing public coin tosses. It is still open whether one can achieve a massive gain in
efficiency by having pre-shared entangled registers.



Chapter 3

Complexity Measures and Lower
Bounds

In the previous chapter we looked at some models of computation. A function that is easy to
compute in any of those models would have a concise representation, and hence would take
small values when analyzed under a variety of mathematical measures.

In this chapter we look at some such measures and what we know about them. These
measures roughly fall into two categories, which we’ll informally think of as counting measures
and weighing measures. An example of a counting measure is the Fourier sparsity of a function
which is a count of how many non-zero Fourier coefficients it has. An example of a weighing
measure is the Fourier `1 norm of a function, which is the sum of the absolute values of its
Fourier coefficients.

F We now give a list of the topics covered in this chapter, highlighting with a F some
observations/expositions that we do not believe are found readily in the literature. When you
reach such an observation/exposition in the chapter the same symbol appears in the margin,
as it does next to this paragraph.

• Measures pertaining to Deterministic Communication

– Rectangle Partition Number

– Rank

– Nonnegative Rank

– γ2 Norm

• Measures pertaining to Randomized Communication

– Approximate Rank

– Approximate Nonnegative Rank

– Sign Rank

33
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– Partition Bound

– Smooth Rectangle Bound

– Corruption Bound

– Approximate γ2: γα2
– γ∞2

F Equivalence between γ∞2 and weakly unbounded error communication complex-
ity

– Grolmusz’s Conjecture

• Measures pertaining to Parity Decision Trees

– Large Affine Space Partition Number

– Sparsity and Spectral Norm

– Parity Leaf Complexity

– Parity Kill Number

• Measures pertaining to Randomized Parity Decision Trees

– Approximate Sparsity and Approximate Spectral Norm

– Polynomial Margin

F A Bridge Between Counting and Weighing

– Grolmusz’s Theorem: Approximate Sparsity vs. Approximate Spectral Norm

– Newman’s Theorem

– Approximate Rank vs. Approximate γ2

– Approximate Nonnegative Rank vs. Smooth Rectangle Bound

• Lifting from PDT Measures to Communication Measures

– Sparsity to Rank, Spectral Norm to γ2

F Margin to γ∞2
F Approximate Sparsity to Approximate Rank

F Quantum Communication is Upper Bounded by γ∞2

• Figure incorporating many of the relations seen in this chapter

We now give a brief description of the starred items.
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• The equivalence between γ∞2 and weakly unbounded error communication complexity
has long been known [LS09b]. However, this equivalence goes via linear programming
duality through another quantity called discrepancy. Here we give a much simpler proof
of the equivalence which does not involve any duality.

• The results given in the Bridge Between Counting and Weighing section are also known.
We observe that all the proofs in the literature follow from similar ideas that can be
unified under a single framework. We attempt to present them from the viewpoint of
this framework.

• Lifting approximate sparsity to approximate rank is a simple consequence of previous
observations. It is nevertheless an interesting statement and we have not seen it stated
before. It is still open whether it can be made tighter.

• That margin lifts to γ∞2 up to a multiplicative constant is implicit in [CM17]. However
this goes through LP duality and discrepancy. Here we note that as a simple corollary
of known theorems one can see that margin lifts exactly to γ∞2 .

• Quantum communication is known to be at most the square root of the approximate
rank [GS19]. This proof goes via approximate γ2. We note that essentially the same
proof can be extended further to show that quantum communication is upper bounded
by γ∞2 .

This remark is an aside, used to give helpful or interesting facts that are relevant but perhaps not necessary.
The proofs in this chapter are enclosed in boxes to allow the reader to scan the chapter with more ease.

3.1 Preliminaries

Before we get started with introducing measures and analyzing them, let us first build a useful
set of tools that we will use in our analysis.

Hoeffding’s lemma is a concentration bound that is useful when we want to reason about
efficient approximations.

Lemma 3.1.1 (Hoeffding’s Inequality [Hoe63]). Let Xi ∈ [ai, bi] for i = 1, 2, . . . , n be inde-
pendent random variables and X = ∑

iXi. Then

Pr[|X − E[X]| ≥ t] < 2 exp
(
− 2t2∑

i(bi − ai)2

)
.

In the section on communication functions, we will be using matrices everywhere. For
a matrix M whose rows are indexed by elements of X and whose columns are indexed by
elements of Y, we will use M [x, y] to denote the (x, y)th entry, M [x, ∗] to denote the row
indexed by x and M [∗, y] to denote the column indexed by y.
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The following observations will be useful when analyzing decompositions of matrices.

• For vectors u, v ∈ Rk and a real number p, 〈√pu,√pv〉 = p〈u, v〉.

• For vectors u1, v1 ∈ Rk1 and u2, v2 ∈ Rk2 , 〈u1 ◦ u2, v1 ◦ v2〉 = 〈u1, v1〉 + 〈u2, v2〉 where
u1 ◦ u2 is the vector in Rk1+k2 obtained by concatenating u1 and u2.

• For vectors u1, v1 ∈ Rk1 and u2, v2 ∈ Rk2 , 〈u1 ⊗ u2, v1 ⊗ v2〉 = 〈u1, v1〉 · 〈u2, v2〉 where
u1 ⊗ u2 is the vector in Rk1k2 obtained by tensoring u1 and u2.

Since the matrix product XY is created by taking inner products of rows and columns of
X and Y , the above observations allow us to create decompositions of new matrices.

Observation 3.1.2. If M1 = X1Y1 and M2 = X2Y2 are in Rm×n, then the following hold.

• M ′ = M1 + M2 has the decomposition X ′Y ′ where X ′[i, ∗] = X1[i, ∗] ◦ X2[i, ∗] and
Y ′[∗, j] = Y1[∗, j] ◦ Y2[∗, j].

• The matrix created by taking the entrywise products of M1 and M2, has the decomposition
X ′Y ′ where X ′[i, ∗] = X1[i, ∗]⊗X2[i, ∗] and Y ′[∗, j] = Y1[∗, j]⊗ Y2[∗, j].

We will also be dealing with the Fourier spectrum of functions (see [O’D14] for a thorough
introduction to Fourier analysis of Boolean functions).

Definition 3.1.3 (Fourier coefficients). Consider the vector space of functions V = {f :
{0, 1}n → R} equipped with the inner product defined by

〈f, g〉 := 1
2n

∑
x∈{0,1}n

f(x)g(x).

The set of parity functions {χS : {0, 1}n → {−1, 1}}S⊆[n], where χS(x) = (−1)
∑

i∈S xi, forms
an orthonormal basis for this vector space under the inner product defined above. Thus, every
function f : {0, 1}n → R has a unique representation f = ∑

S⊆[n] f̂(S)χS. The coefficients
{f̂(S)}S⊆[n] are called the Fourier coefficients of f .

Theorem 3.1.4 (Parseval’s Theorem). For a function f : {0, 1}n → R, we have

∑
S⊆[n]

f̂(S)2 = f̂(∅)2.

3.2 Measures for Communication Functions

3.2.1 Deterministic

Recall from Observation 2.1.3 that a cost-c deterministic communication protocol is a depth c
binary tree which has, among others, the following properties.
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• Each leaf corresponds to a combinatorial rectangle.

• The rectangles at the leaves partition the whole input space.

• Given an input, the output of the protocol is the label of the leaf that the input lands in.

Rectangle Partition Number

It follows that if F is a function computed by a cost-c deterministic communication protocol,
then the at most 2c leaves of the protocol partition the set of inputs into at most 2c rectangles,
each rectangle being monochromatic (each rectangle consists solely of 1-inputs or solely of
0-inputs). This yields the following lower bound.

Definition 3.2.1 (Rectangle Partition Number). Let Rect1(F ) be defined as the minimum
number k for which there exist k disjoint rectangles {Ai ×Bi}i∈[k] such that

⋃
i∈[k]Ai ×Bi =

F−1(1). We similarly define Rect0(F ) with F−1(0) instead.

Lower Bound 1: Rectangle Partition Number [Yao79]

Dcc(F ) ≥ log(Rect1(F )).

Note that the above bound is extremely one-sided in that it cares only about partitioning
the 1-inputs. The lower bound could have been derived as Dcc(F ) ≥ log(Rect0(F ) + Rect1(F )).
However, the following theorem shows that the weak bound itself is quadratically tight.1

Theorem 3.2.2 ([AUY83, Yan91]). Dcc(F ) ≤ O(log2(Rect1(F ))).

Proof. Let R be a set of monochromatic 1-rectangles of size Rect1(F ) partitioning
F−1(1). Given an input (x, y), Alice and Bob compute Rx = {R = A×B ∈ R|x ∈ A}
and Ry = {R = A × B ∈ R|y ∈ B} respectively. Note that Rx ∩ Ry is the set of
1-rectangles of R that (x, y) lies in, and hence has size either 0 or 1. Given rectangles
R1 = A1 ×B1 and R2 = A2 ×B2, we say that R1 and R2 row-intersect if A1 ∩A2 6= ∅,
and column-intersect if B1 ∩B2 6= ∅.
Given x, it would be helpful if Alice could convey a lot of information about Rx to
Bob. In particular, if there was a rectangle R = A×B ∈ Rx that row-intersects with
at most Rect1(F )/2 other 1-rectangles, then Alice could mention that rectangle to
Bob and Bob could cut down Alice’s possible rectangles by half. In other words they
recurse on the function F ′, which is F restricted to the inputs A × Y. By definition,
Rect1(F ′) ≤ Rect1(F )/2 + 1.
Similarly if Bob could find a rectangle R ∈ Ry that doesn’t column-intersect with many
rectangles, he could convey this to Alice and they can again recurse.

1A consequence of this theorem is the neat combinatorial fact that log(Rect1(F )) ≤ O(log2(Rect0(F ))).
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If Rect1(F ) = O(1), it is easy to see that there is a constant cost protocol for it.
If neither of them can find such a rectangle, it turns out that the input is not in a
1-rectangle and they can output 0. We can reason as follows. Let (x, y) ∈ R ∈ Rx ∩Ry.
We know R row-intersects with at least Rect1(F )/2 + 1 other 1-rectangles and column-
intersects with at least Rect1(F )/2 + 1 other 1-rectangles. Hence it intersects with
another 1-rectangle, which is not possible since R is a partition.
The number of times the recursion can happen is at most O(log(Rect1(F ))). The number
of bits required to be communicated in each recursion is at most dlog(Rect1(F ))e+O(1).
The total cost of the protocol is at most O(log2(Rect1(F ))).

There are functions known that do exhibit the quadratic gap [GPW15].

Rank and Nonnegative Rank

For a rectangle R, let R(x, y) be the function that is 1 if (x, y) ∈ R and 0 otherwise. A
consequence of having a partition of F into monochromatic rectangles is that F can be written
as F (x, y) = ∑

i∈[Rect1(F )]Ri(x, y), where the rectangles Ri come from the definition of Rect1(F )
(Definition 3.2.1). Note that the communication matrix for the function R(x, y) is a rank-1
matrix. By the subadditivity of rank we get that rank(F ) ≤ Rect1(F ), and consequently we
have the following lower bound.

Lower Bound 2: Rank [MS82]

Dcc(F ) ≥ log(rank(F )).

Unlike the case with the rectangle partition number, we do not know whether this lower
bound is tight. Given that rank is such a fundamental measure, this open question is regarded
as the biggest open problem in communication complexity.

Conjecture 3.2.3: The Log-Rank Conjecture (LRC) [LS88]

There exists a universal constant α such that for any total communication function F ,
we have that Dcc(F ) ≤ O(logα(rank(F ))).

The best known upper bound in terms of rank is Dcc(F ) ≤
√

rank(F ) log(rank(F )) [Lov16].
There is a much easier upper bound of rank(F ) itself, but we will see a better (and surprising)
upper bound using approximate rank later on in this chapter (Theorem 3.2.15).

Towards falsifying the conjecture, the quadratic separation between deterministic commu-
nication and the logarithm of the rectangle partition number gives us a quadratic separation
between deterministic communication and the logarithm of the rank.

One reason why rank might be much smaller than the rectangle partition number is that
rank-1 matrices are not constrained to only have entries in {0, 1}, like rectangles are constrained
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to do. Relaxing this constraint partway gives us an intermediate measure, that of nonnegative
rank.

Definition 3.2.4 (Nonnegative Rank). For a function F with communication matrix M the
nonnegative rank of F , rank+(F ), is defined as the minimum k for which there exist nonnegative
rank-1 matrices {Mi}i∈[k] such that M = ∑

i∈[k]Mi.

Nonnegative rank is actually defined for any nonnegative matrix and is an interesting measure on matrices
even when the matrices are not Boolean [Yan91]. Interestingly, the logarithm of the nonnegative rank
of any nonnegative matrix is exactly characterized by the randomized communication complexity of an
associated task [FFGT15]: Accept input (x, y) with probability proportional to M [x, y].

Lower Bound 3: Nonnegative Rank [Yan91]

Dcc(F ) ≥ log(rank+(F )).

Note that this lower bound is one-sided, similar to our rectangle partition number lower
bound (Lower bound 1). This could actually be strengthened to

Dcc(F ) ≥ max
{

log(rank+(F )), log(rank+(F ))
}
,

since Dcc is closed under complementation. However, this does not make much of a difference
thanks to the following theorem that says that the one-sided lower bound itself is quadratically
tight.2

Theorem 3.2.5 ([Lov90]). Dcc(F ) ≤ O(log2(rank+(F ))).

Proof. The communication matrix of F decomposes into r = rank+(F ) nonnegative
rank-1 matrices M1,M2, . . . ,Mr. Since they are nonnegative and rank-1, the non-zero
elements of each Mi must actually be rectangles in F−1(1). Let these rectangles be
R1, R2, . . . , Rr. Note that they need not be disjoint.
The measure that is used to mark the progress of the protocol is a bit weird. It is the
maximum k for which there is a k × k submatrix of F with diagonal entries 0 and all
entries below it 1. Let us refer to this as k(F ). Note that such a submatrix already
gives a lower bound of k(F )− 1 on rank(F ).
For each of the r rectangles Ri = Ai ×Bi, define Si = Ai × Y and Ti = X ×Bi. Note
that k(F ) ≥ k(Si) + k(Ti) since the submatrices in Si and Ti can be combined using
the 1s in Ri.

2A consequence of this theorem is the interesting algebraic fact that log(rank+(F )) ≤ O(log2(rank+(F ))).



40 CHAPTER 3. COMPLEXITY MEASURES AND LOWER BOUNDS

The figure to the right illustrates how for any 1-rectangle
R = A×B,

k(F ) ≥ k(A× Y) + k(X ×B). 1
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If k(Si) ≤ k(F )/2, we call Ri an Alice-favoured rectangle. We similarly define Bob-
favoured rectangles. Each of the rectangles is either Alice-favoured or Bob-favoured.
If there is an Alice-favoured rectangle Ri such that x ∈ Ai, then Alice sends Bob i and
they recurse on the function F restricted to Si. Similarly, if there is a Bob-favoured
rectangle Ri with y ∈ Bi, they recurse on F restricted to Ti. If none of these conditions
hold, this means that (x, y) is in none of the 1-rectangles and F (x, y) = 0.
When k(F ) ≤ 1, it is easy to see that the function has constant communication cost.
The total number of recurrences is at most O(log(k(F ))), and each recurrence uses
communication at most log(r) +O(1). The total communication in the protocol is hence
at most O(log(r) log(k(F ))) ≤ O(log(rank+(F )) log(rank(F ))).

This also gives an equivalent and interesting reformulation of the Log-Rank Conjecture: Is
there a Boolean matrix such that its rank is much smaller than its nonnegative rank?

We also note that the theorem is slightly stronger than stated. The proof shows that
Dcc(F ) ≤ log rank(F )NPcc(F ), since the NPcc complexity of a function is the logarithm of the
minimum number of 1-monochromatic rectangles needed to cover the 1s of the function.

γ2 Norm

A final lower bound that we shall look at for deterministic communication complexity is a
weighing measure that has been widely studied by Banach space theorists and introduced to
communication complexity relatively recently [LMSS07].

Definition 3.2.6 (γ2). Let F be a function with communication matrix M . γ2(M) is defined
as minM=XY row(X)col(Y ), where row(X) is the maximum of the `2 norms of the rows of
X and col(Y ) is the maximum of the `2 norms of the columns of Y . By γ2(F ), we refer to
γ2(M).

γ2 is in fact a norm. γ2(M) can only be zero when one of the matrices in the decomposition
is an all-zero matrix, and hence M itself is the all-zero matrix. It is easy to see that
γ2(αM) = αγ2(M). We can see the subadditivity of γ2 as follows.
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If γ2(M1) = a1 and γ2(M2) = a2, then there exist X1, Y1, X2, Y2 such that M1 = X1Y1,
M2 = X2Y2, row(X1) = col(Y1) = √a1 and row(X2) = col(Y2) = √a2.3 We now create
matrices X ′ and Y ′ as per Observation 3.1.2 so that M1 + M2 = X ′Y ′. Now row(X ′) ≤√

row(X1)2 + row(X2)2 =
√
a1 + a2. Similarly col(Y ′) ≤

√
a1 + a2. Hence γ2(M1 + M2) ≤

γ2(M1) + γ2(M2).
If R = A×B is a rectangle, it can be written as the outer product of the characteristic

vectors of A and B. Hence γ2(R) = 1, and γ2(F ) ≤ Rect1(F ). This gives us a weaker lower
bound.

Lower Bound 4: γ2 [LS09d]

Dcc(F ) ≥ log(γ2(F )).

It is known that this bound is not tight. For instance, take the equality function where
Alice gets n bits and Bob gets n bits and they want to accept iff the two bitstrings are equal.
Its communication matrix is just the identity matrix, which can be decomposed as identity
times identity. All rows and columns of the identity matrix have norm 1. Hence the equality
function has γ2 norm 1, but its communication complexity is n+ 1.4

Seemingly coincidentally, equality has public coin randomized communication complexity
O(1). In fact, it was observed that no function is known to have small randomized commu-
nication complexity and large γ2 norm [LS09d]. Perhaps, they conjectured, γ2 lower bounds
randomized communication complexity. This would be surprising since, as we will give some
evidence for later on, none of the randomized lower bounds we know of involve a quantity that
is an exact complexity measure. Yet the conjecture is open.

Conjecture 3.2.7: γ2 as a Randomized Lower Bound [LS09d]

Rcc
1/3(F ) ≥ log γ2(F ).

However, it might not be so surprising that there is no known counterexample to the above
conjecture. After all, nearly every function known to have small randomized communication
complexity has small complexity in a certain deterministic model that γ2 continues to serve
as a lower bound for. Consider the model of communication complexity wherein Alice and
Bob are also given access to an equality oracle. This corresponds to a deterministic protocol
tree with oracle nodes in addition to Alice and Bob nodes. For every oracle node v, there is
an associated Alice function fv,A : X → {0, 1}∗ and a Bob function fv,B : Y → {0, 1}∗. On
input (x, y) at such an oracle node v, the oracle communicates 1 if fv,A(x) = fv,B(y), and 0
otherwise. Alice and Bob traverse the tree accordingly and output the value at the leaf that
they reach. We call such trees PEQ trees. A PEQ tree computes a function F iff for every input

3This could involve suitably scaling matrices X1 and Y1 if row(X1) was not equal to col(Y1).
4The lower bound of n + 1 follows from the observation that the equality function has Rect1 = 2n, and

Rect1 + Rect0 > 2n
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(x, y), the leaf that (x, y) reaches is labeled F (x, y).

Definition 3.2.8 (PEQcc complexity). The PEQcc complexity of F is defined as

min
PEQ trees T computing F

depth(T ).

Theorem 3.2.9. PEQcc(F ) ≥ log(γ2(F ))
2 .

Proof. Let ` be a leaf of a PEQ tree, with the path from the root being r = v1
bv1−−→

v2
bv2−−→ v3 · · · vk

bvk−−→ `. Note that an input (x, y) reaches ` iff the following conditions
hold.

• For every Alice node v along the path, fv(x) = bv.

• For every Bob node v along the path, fv(y) = bv.

• For every oracle node v along the path, fv,A(x) = fv,B(y) iff bv = 1.

We now see which inputs reach `. Corresponding to every node v along the path, define
the matrix Mv,bv such that Mv,bv [x, y] = 1 if (x, y) satisfies the above condition for node
v and 0 otherwise. Define M` = ∧

i∈[k]Mvi,bvi
, where M1 ∧M2 is obtained by taking

the entrywise products of M1 and M2. Since the entries are Boolean, this is the same
as taking their logical AND. M` is hence the characteristic matrix of the inputs that
reach the leaf `.
If v is an Alice node or a Bob node, then Mv,bv is a rectangle and hence γ2(Mv,bv) = 1.
If v is an oracle node, then we claim that Mv,1 = 1 and Mv,0 ≤ 2. To see this, let
S = range(fv,A) ∪ range(fv,B). Then Mv,1 = XY , where the row of X corresponding to
input x is the vector in {0, 1}S with a 1 in the coordinate corresponding to fv,A(x) (i.e.
the unit vector efv,A(x)) and the column of Y corresponding to input y is the vector in
{0, 1}S with a 1 in the coordinate corresponding to fv,B(y). Hence γ2(Mv,1) = 1. Mv,0

is the all-ones matrix minus Mv,1. Since γ2 is a norm, it follows that γ2(Mv,0) ≤ 2.
One last observation we will need is that γ2(M1∧M2) ≤ γ2(M1)γ2(M2). Let M = M1∧
M2, M1 = X1Y1 and M2 = X2Y2. We now construct X ′ and Y ′ as per Observation 3.1.2
so that M1∧M2 = X ′Y ′. Now row(X ′) ≤ row(X1)row(X2) and similarly for the columns
of Y ′. This establishes that γ2(M1 ∧M2) ≤ γ2(M1)γ2(M2), and that γ2(M`) ≤ 2k.
Let T be a depth-c PEQ tree computing F . Consider L, the set of leaves labeled 1. They
partition F−1(1) into at most 2c sets. We can write F (x, y) = ∑

`∈LM`(x, y). Since γ2

is a norm, γ2(F ) ≤∑`∈L γ2(M`) ≤ 2c · 2c = 22c.

Until very recently, every total function that was known to be easy for randomized
communication protocols was also known to be easy for PEQ protocols. Hence γ2 was small
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for all known functions with low randomized communication cost. Things changed when
Chattopadhyay, Lovett and Vinyals [CLV19] published a remarkable paper with a function
that was easy for randomized communication but hard for PEQ protocols. This gives us the first
candidate function which could show that γ2 does not lower bound randomized communication
complexity. It is as yet unknown whether this function has large γ2 norm.

More will be said about γ2 and related measures when we analyze lower bounds on
randomized communication complexity. To that end, it is useful to note the following link
between γ2 and rank, well known to matrix theorists.

Theorem 3.2.10. For any matrix M , γ2(M) ≤
√

rank(M) maxi,j |M [i, j]|.

One of the proofs of this theorem uses John’s theorem, which we state here without proof.

Theorem 3.2.11 (John’s Theorem [Joh14]). For any symmetric convex set K ⊂ Rd, there is
an ellipsoid E such that E ⊆ K ⊆

√
dE.

Here an ellipsoid refers to any shape obtained by taking the unit ball in Rd and transforming
it by a linear transformation taking ei to vi for some set of orthogonal vectors v1, . . . , vd. We
now prove Theorem 3.2.10.

Proof. Let rank(M) = r, with a rank decomposition M = AB. Let K be the symmetric
convex set in Rr obtained by taking the convex hull of the columns of B and −B. Let
E be the ellipsoid guaranteed by John’s Theorem. The convex hull contains E and is
contained in

√
rE. Let T be a linear transformation taking the unit ball to E.

We now consider the decomposition M = ATT−1B. Let A′ = AT and B′ = T−1B.
The convex hull of the columns of B′ and −B′ will now contain the unit ball and
be contained in the ball of radius

√
r. A consequence of this is that for any vector

v ∈ Rr, v
‖v‖ is in this convex hull. Hence there is a column w of B′ or −B′ such that

〈v, w〉 ≥ 〈v, v
‖v‖〉 = ‖v‖.

In particular for any row of A′, say A′[i, ∗], ‖A′[i, ∗]‖ ≤ maxj |〈A′[i, ∗], B′[∗, j]〉| =
maxj |M [i, j]|. Since additionally every column of B′ has length at most

√
r, γ2(M) ≤

√
rmaxi,j |M [i, j]|.

The proof above also gives us the following observation.

Observation 3.2.12. Every matrix M of rank r has a rank decomposition M = AB which
also witnesses γ2(M) ≤

√
rmaxi,j |M [i, j]|.

3.2.2 Randomized

We now move on to randomized communication protocols. For a randomized protocol comput-
ing F to output the correct answer on input (x, y), the protocol must output 1 with probability
close to F (x, y). In our attempts to lower bound Rcc

ε (F ), we will try to show that no matrix of
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probabilities that is close to the communication matrix of F is ‘mathematically simple’, hence
implying that none of them could have come from a small-cost protocol. In case there is such
a ‘mathematically simple’ matrix close to the communication matrix of F but F has no small
randomized protocol, then our lower bound will not be able to observe the hardness of F .

Note that we have gone from hoping (in the deterministic case) that ‘every Boolean matrix
which is simple must come from a small-cost deterministic protocol’ to now essentially hoping
that ‘every matrix of probabilities which is simple must come from a small-cost randomized
protocol’.

Nevertheless one lower bound is better than none. So let us see what lower bounds we get
with this hope and how good they are.

Recall from Observation 2.1.6 that a cost-c private coin communication protocol is a depth
c binary tree which has, among others, the following properties.

• For any leaf `, the matrix whose entries are the probabilities that the various inputs
(x, y) reach ` is a rank-1 matrix.

• For any input, the probability that the protocol outputs o is the probability that the
input reaches a leaf labeled o.

Approximate Ranks

Let Π be a cost-c private coin communication protocol and let L be the set of leaves of Π
labeled 1. Let M` be the matrix such that M`[x, y] = Pr[(x, y) reaches `]. We know that M`

is a rank-1 matrix. Since Pr[Π(x, y) = 1] = ∑
`∈LM`(x, y), we have that MΠ, the matrix

such that MΠ[x, y] = Pr[Π accepts (x, y)], has rank at most 2c. This motivates the following
definition.

Definition 3.2.13 (Approximate Rank). For a function F with communication matrix M
the ε-approximate rank of F , which we denote as rankε(F ), is defined as

min
M ′:||M−M ′||∞≤ε

rank(M ′).

The paragraph above showed that for any F with an ε-error cost-c private coin communi-
cation protocol, rankε(F ) ≤ 2c.

Lower Bound 5: Approximate Rank [Kra96]

Rcc
pri,ε(F ) ≥ log(rankε(F )).

As was the case with the deterministic rank lower bound, it had long been open5 whether
this lower bound is tight.

5The earliest reference we could find to the conjecture was from Wikipedia user ForgeGod on the page for
‘Communication Complexity’ [For05]. It did have a typographical error, so we will default to crediting Lee and
Shraibman [LS09b].
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Conjecture 3.2.14: The Log-Approximate-Rank Conjecture (LARC) [LS09b]

There exists a universal constant α such that for any total communication function F ,
we have that Rcc

pri,1/3(F ) ≤ O(logα(rank1/3(F ))).

This conjecture has been proven false in this thesis in Chapter 4.

Interestingly the Log-Approximate-Rank Conjecture is known to imply the Log-Rank
Conjecture [GL14].

It is worth noting that one can decrease the error parameter in the approximate rank with a
modest increase in the approximate rank [Alo03]. Given a matrix M and a degree-d univariate
real polynomial p(t) = ∑

ait
i, one can create a matrix M ′ such that M ′[x, y] = p(M [x, y])

with rank(M ′) ≤∑i∈[d] rank(M)i. This follows directly by using Observation 3.1.2. Given any
ε, ε′ < ε, there is an O( log(1/ε′)

1−2ε ) degree polynomial that maps the intervals [0, ε] and [1− ε, 1]
to within the intervals [0, ε′] and [1− ε′, 1] respectively.

Consider a t-biased coin tossed d times. The probability of seeing more than d/2 Heads can be written as
a degree-d polynomial in t. Using Hoeffding’s lemma (Lemma 3.1.1), one can see that with the mentioned
degree, the polynomial satisfies the required conditions.

Putting the above together, the ε′-approximate rank of M is at most rankε(M)O( log(1/ε′)
1−2ε ).

This blow-up is small when one looks at log rankε.
The best known upper bound in terms of approximate rank is Rcc

pri,1/3(F ) ≤ O(rankε(F )) for
any constant ε < 1

2 [GS19]. While they give multiple ways to prove this, a particularly striking
method shows that the deterministic one-way communication cost6 of F is O(rankε(F )). We
reproduce one such elegant proof here.

Theorem 3.2.15. [[GS19]] For any communication function F , the one-way deterministic
communication complexity of F is at most d(rankε(F ) + 1) log( 2

1−2ε)e.

Proof. The idea behind this proof is essentially that one can not pack a large number
of cubes in a larger cube if the dimension is small.
Let r = rankε(F ). This implies the existence of a matrix M that is entrywise ε-close to
the communication matrix of F and that has rank r. Consider the matrix M ′ = M− 1

2J .
It has rank at most r + 1 and has entries in [−1

2 − ε,−
1
2 + ε] ∪ [1

2 − ε,
1
2 + ε]. Let

v1, v2, · · · , vr+1 ∈ R2n be rows of M ′ that span the rows of M ′. Let the subspace S be
defined as their span.
Let the number of distinct rows in the communication matrix of F be NF . Any pair of
rows among these has `∞ distance at least 1 since they must differ in at least 1 entry.
The corresponding rows in M ′ will then have `∞ distance at least 1−2ε. Let the rows in

6The number of bits Alice needs to send Bob for Bob to output the correct answer.
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M ′ corresponding to the NF distinct rows of F be w1, w2, · · · , wNF . Hence if we draw
open `∞ balls (essentially hypercubes) of radius 1

2 − ε around each wi, these must be
disjoint. Let us call these balls B1, B2, · · · , BNF . All these open balls are contained in
another open ball: the open `∞ ball B of radius 1 centered around the origin. We now
note that a similar structure can be observed even when restricted to the subspace S.
Note that Bi ∩ S = wi + (1

2 − ε)(B ∩ S), since the right hand side is exactly those
points that are in S and are at a distance of at most 1

2 − ε from wi. Hence B ∩ S
contains the NF disjoint sets wi + (1

2 − ε)(B ∩ S). Since the ratio of the volumes (when
measured in the subspace S) of (1

2 − ε)(B ∩ S) and B ∩ S is (1
2 − ε)dim(S), we see that

NF ≤ (1/(1
2 − ε))r+1.

For the one-way protocol, Alice merely needs to tell Bob which of the NF rows her
input x corresponds to, which takes dlog(NF )e bits.

The same paper shows that in the case of quantum communication complexity, one has a
stronger upper bound of O

(
1

(1−2ε)2

√
rankε(F ) log(rankε(F )

)
.

Towards falsifying the conjecture, the set disjointness function shows a quadratic separation.
Its randomized communication complexity is known to be Ω(n) [KS92, Raz92]. Its approximate
rank is at most 2O(

√
n) since its quantum communication complexity is O(

√
n) [AA05] and the

logarithm of the approximate rank lower bounds quantum communication complexity [BdW01].
A fourth-power separation between randomized communication and the logarithm of the
approximate rank was recently discovered [GJPW17].

One reason approximate rank might not be a good representation of randomized com-
munication complexity is that it allows decompositions involving negative numbers, whereas
the decomposition coming from the protocol did not use negative numbers. In the case of
deterministic communication, disallowing negative decompositions made the lower bound tight.
It would be worthwhile to try it out here too.

Definition 3.2.16 (Approximate Nonnegative Rank). For a function F with communication
matrix M the ε-approximate nonnegative rank of F , which we denote as rank+

ε (F ), is defined
as minM ′:||M−M ′||∞≤ε rank+(M ′).

Lower Bound 6: Approximate Nonnegative Rank [Kra96]

Rcc
pri,ε(F ) ≥ max

{
log(rank+

ε (F )), log(rank+
ε (F ))

}
.

Set Disjointness has 1/3-approximate nonnegative rank 2Ω(n) [Raz92, KMSY14], so this
method is known to give better lower bounds than approximate rank. However, unlike the
deterministic case, it is still open whether this bound is tight. Lee [Lee12] asked how large
the separation can be between approximate rank and approximate nonnegative rank. Again,
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unlike the deterministic case, it was also not known whether log(rank+
ε (F )) and log(rank+

ε (F ))
could be very different. This gives rise to two conjectures.

Conjecture 3.2.17: Log-Approximate-Nonnegative-Rank Conjecture [KMSY14]

There exists a universal constant α such that for any total communication function F ,
we have that Rcc

pri,1/3(F ) ≤ O(logα(max
{

rank+
ε (F ), rank+

ε (F )
}
).

The second conjecture is a stronger version of the above, that looks at only F and not F .
We refer to this as the Strong Log-Approximate-Nonnegative-Rank Conjecture.

Conjecture 3.2.18: Strong Log-Approximate-Nonnegative-Rank Conjecture [KMSY14]

There exists a universal constant α such that for any total communication function F ,
we have that Rcc

pri,1/3(F ) ≤ O(logα(rank+
ε (F )).

This conjecture has been proven false in this thesis in Chapter 4.

The last rank measure we shall look at is that of sign rank, for which a very tight log-rank
statement holds.

Definition 3.2.19 (Sign Rank [PS86]). Given a function F with communication matrix M ,
the sign rank of F , denoted rank±(F ), is defined as minM ′:||M−M ′||∞< 1

2
rank(M ′).

The reason it is called sign rank becomes clear when it is used on functions that output
values in {−1, 1} instead of {0, 1}. Then the definition changes to being the minimum rank
among all matrices M ′ that entrywise agree in sign with M . The sign ranks of a function
under these two definitions differ by at most 1.

Let us define Rcc
pri,< 1

2
(F ) to be the minimum cost among private coin protocols that on all

inputs (x, y), output F (x, y) with probability greater than half. This measure is called the
unbounded error communication cost.

Theorem 3.2.20 ([PS86]). dlog(rank±(F ) + 1)e+ 2 ≥ Rcc
pri,< 1

2
(F ) ≥ log rank±(F ).

Proof. The lower bound follows just like the other rank lower bounds in this section.
If a protocol of cost c correctly computes F , the probability of acceptance matrix has
rank at most 2c and this matrix must also approximate the communication matrix to
within error < 1

2 . Therefore rank±(F ) ≤ 2
Rcc

pri,< 1
2

(F )
.

For the upper bound, let the sign rank of F be r and let M ′ be a matrix in the
definition of sign rank that achieves the rank r. Note that M± , 2M ′ − J has rank
at most r + 1, where J is the all-ones matrix. Now M±[x, y] is positive iff F [x, y] = 1.
Let M± = ∑

i∈[r+1]Mi, where each Mi has rank 1. Scale M± till each matrix in the
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decomposition has absolute value at most 1 for all its entries (we will continue to refer
to the scaled matrices by their old names). Alice and Bob, who have inputs x and y

respectively, will now aim to output 1 with probability 1
2 + M±[x,y]

2(r+1) , which gives them a
positive advantage, completing the theorem.
To do so, Alice samples a uniformly random number i from [r + 1] and sends it to Bob.
Now Mi can be written as the outer product of two vectors v and w, each of which have
the absolute value of any entry at most 1. Alice tosses a Bernoulli

(
1+v[x]

2

)
coin and

sends the outcome to Bob. Bob then tosses a Bernoulli
(

1+w[y]
2

)
coin. He sends Alice a

1 if both were Heads or if both were Tails. Alice and Bob output that last bit.
The probability of outputting 1 given that they sampled Mi is(1 + v[x]

2

)(1 + w[y]
2

)
+
(1− v[x]

2

)(1− w[y]
2

)
= 1 + v[x]w[y]

2 = 1
2 + 1

2Mi[x, y].

The probability of outputting 1 in the overall protocol is 1
r+1

∑
i∈[r+1](1

2 + 1
2Mi[x, y])

which is 1
2 +M±[x,y]

2(r+1) as required. The total communication cost is dlog(rank±(F )+1)e+2.

There are many more fascinating lower bound methods known that follow from looking at
public coin protocols. Recall that a cost-c public coin protocol is a distribution over cost-c
deterministic protocols. Given an input (x, y) and a public coin protocol Π, the probability
that Π outputs 1 on (x, y) is the probability that a deterministic protocol sampled from the
distribution Π outputs 1 on (x, y).

Let Π be the distribution that samples deterministic protocols Π1, . . . ,Πk with probabilities
p1, . . . , pk respectively. Each Πi is a partition of the input space into 2c 0/1-labeled rectangles.
Hence the protocol Π induces a weighted set of labeled rectangles. If the rectangle R appears
with the label b in the partitions corresponding to protocols {Πi}i∈I , then (R, b) is given weight
wR,b = ∑

i∈I pi. If Π is a protocol computing F to within error ε, this weighted set satisfies
the following properties.

• ∀(x, y) ∈ F−1(1), ∑
R:(x,y)∈R wR,1 ∈ [1− ε, 1].

• ∀(x, y) ∈ F−1(0), ∑
R:(x,y)∈R wR,0 ∈ [1− ε, 1].

• ∀(x, y), ∑
R:(x,y)∈R wR,0 + wR,1 = 1.

• ∑
(R,b)wR,b ≤ 2c.

The first two points above follow from the correctness of Π. The third follows from the
fact that (x, y) lands in a rectangle with probability 1. The last point follows from the fact
that the deterministic protocol Πi can contribute at most pi2c weight and ∑ pi = 1.
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The LP Bounds

A lower bound measure follows immediately from the above description. Let R be the set of
all rectangles in a communication matrix.

Definition 3.2.21 ([JK10]). For a function F , let partε(F ) be the optimal value of the
following LP.

Variables {wR,b : R ∈ R, b ∈ {0, 1}}
Minimize

∑
R∈R,b∈{0,1}

wR,b

s.t. ∀(x, y) ∈ F−1(1)
∑

R:(x,y)∈R
wR,1 ≥ 1− ε

∀(x, y) ∈ F−1(0)
∑

R:(x,y)∈R
wR,0 ≥ 1− ε

∀(x, y)
∑

R:(x,y)∈R
wR,0 + wR,1 = 1

∀R ∈ R, b ∈ {0, 1} wR,b ≥ 0

Lower Bound 7: Partition Bound [JK10]

Rcc
ε (F ) ≥ log(partε(F )).

However, lower bounds proved on the partition bound typically do not use all the constraints.
The lower bounds obtained are mostly on relaxations of this LP. Let us look at a couple of
such relaxations.

The smooth rectangle bound is obtained by either looking at the weights of rectangles
labeled 1 or those of rectangles labeled 0. Since it is one-sided, we can parametrize the measure
by which side we are looking at.

Definition 3.2.22 (Smooth Rectangle [JK10]). For a function F , let srectzε (F ) be the optimal
value of the following LP.

Variables {wR : R ∈ R}
Minimize

∑
R∈R

wR

s.t. ∀(x, y) ∈ F−1(z)
∑

R:(x,y)∈R
wR ≥ 1− ε

∀(x, y) ∈ F−1(z)
∑

R:(x,y)∈R
wR ≤ 1

∀(x, y) ∈ F−1(z)
∑

R:(x,y)∈R
wR ≤ ε

∀R ∈ R wR ≥ 0



50 CHAPTER 3. COMPLEXITY MEASURES AND LOWER BOUNDS

Lower Bound 8: Smooth Rectangle Bound [JK10]

Rcc
ε (F ) ≥ max{log(srect1

ε (F )), log(srect0
ε (F ))}.

This lower bound is particularly relevant as it has a connection to a previously seen lower
bound. Kol et al. [KMSY14] show that this measure is almost equivalent to the approximate
nonnegative rank. We shall see a proof of this in Section 3.4.

Again, the smooth rectangle bound is a stronger lower bound than a previously known
and widely used bound. In this relaxation, we relax the approximation guarantee.

Definition 3.2.23 (Rectangle Bound [Lov90]). For a function F , let rectzε (F ) be the optimal
value of the following LP.

Variables {wR : R ∈ R}
Minimize

∑
R∈R

wR

s.t. ∀(x, y) ∈ F−1(z)
∑

R:(x,y)∈R
wR ≥ 1− ε

∀(x, y) ∈ F−1(z)
∑

R:(x,y)∈R
wR ≤ ε

∀R ∈ R wR ≥ 0

Lower Bound 9: Rectangle Bound [Lov90, Yao83, BPSW06]

Rcc
ε (F ) ≥ max{log(rect1

ε (F )), log(rect0
ε (F ))}.

However, it turns out to be equivalent [JK10] to another previously known combinatorial
lower bound known as the corruption bound, used implicitly by Yao [Yao83] and refined by
Beame, Pitassi, Segerlind and Wigderson [BPSW06]. This bound has an intuitive interpretation,
saying that every rectangle that’s not minuscule is “corrupt”. We provide its definition below
and then show how it is equivalent to the smooth rectangle bound.

Definition 3.2.24 (Corruption Bound [Yao83, BPSW06]). Fix an ε > 0. Let µ be a distribu-
tion on the inputs of F with µ(F−1(1)) ≥ 1

2 . Let β ≥ 0 be such that for all rectangles R with
µ(R) ≥ β (i.e. for all large rectangles), µ(R ∩ F−1(0)) ≥ εµ(R ∩ F−1(1)) (i.e. the rectangle is
corrupt and cannot be too 1-biased). Then corr1

ε (F ) = minµ,β 1/β.

The proof that the corruption bound lower bounds communication is the same as the proof
that it lower bounds the rectangle bound, so it is a corollary of the first part of the following
theorem.

Theorem 3.2.25 (Equivalence of corruption and rectangle bounds [JK10]). Fix an ε ≥ 0.
Then for any function F ,

rect1
ε/2(F ) ≥ 1− ε

4 corr1
ε (F ) and corr1

ε (F ) ≥ 1
1 + ε

rect1
2ε(F ).
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Proof. For the first part, let µ, β be the minimizers in the definition of corr1
ε (F ). We

will use them to prove a lower bound on rect1
ε′(F ), finally setting ε′ = ε/2. Let {wR} be

a set of rectangle weights minimizing the LP in the definition on rect1
ε′(F ). By the fact

that µ(F−1(1)) ≥ 1
2 and that ∑R3(x,y)wR for each (x, y) ∈ F−1(1), we derive that

∑
R

µ(R ∩ F−1(1))wR ≥
1− ε′

2 and
∑
R

µ(R ∩ F−1(0))wR ≤
ε′

2 .

Let R be the set of ‘large’ rectangles, namely those that satisfy µ(R) ≥ β. These are
‘corrupt’, so putting a lot of weight on them will introduce too much error. Indeed
if ∑R∈R µ(R ∩ F−1(1))wR > ε′

2ε , then ∑R∈R µ(R ∩ F−1(0))wR > ε′

2 contradicting the
constraint from the rectangle bound. Hence

∑
R∈R

µ(R ∩ F−1(1))wR ≤
ε′

2ε .

So a large portion of the weight must be covered by small rectangles. This will lead us
to the lower bound.

β
∑
R

wR ≥ β
∑
R/∈R

wR ≥
∑
R/∈R

µ(R)wR ≥
∑
R/∈R

µ(R ∩ F−1(1))wR ≥
1− ε′

2 − ε′

2ε .

Hence rect1
ε/2(F ) = ∑

R wR ≥ 1−ε
4β = 1−ε

4 corr1
ε (F ).

The other direction is proved via linear programming duality. The dual of the given LP
for the rectangle bound is as follows.

Variables {γx,y : (x, y) ∈ X × Y}

Maximize (1− ε)

 ∑
(x,y)∈F−1(1)

γx,y

 −ε

 ∑
(x,y)∈F−1(0)

γx,y


s.t. ∀R ∈ R

∑
(x,y)∈R

(x,y)∈F−1(1)

γx,y −
∑

(x,y)∈R
(x,y)∈F−1(0)

γx,y ≤ 1

∀(x, y) ∈ X × Y γx,y ≥ 0

We start with an optimal solution {γx,y} for the dual LP with parameter ε′. Note that
the constraints on the rectangles are a corruption-like constraint, saying that a rectangle
cannot be both large and 1-biased. Indeed we start by creating a distribution that
witnesses that all ‘large’ rectangles are corrupt. From {γx,y}, we create a distribution µ
which samples z ∈ {0, 1} uniformly at random, and then chooses a z-input according to
the weights γx,y. To understand µ, we note that there are constants c0, c1 such that for
0-inputs (x, y), µ(x, y) = c0γx,y and for 1-inputs (x, y), µ(x, y) = c1γx,y. We get some
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handle on these constants by looking at the objective function, which implies that

∑
1−inputs

γx,y ≥ rect1
ε′(F ) and

∑
1−inputs

γx,y ≥ ε′
∑

0−inputs
γx,y.

As a consequence, c1 ≤ 1/2rect1
ε′ (F ) and c0 ≥ ε′c1.

Using these, we can simplify the corruption-like constraint ∑
1−inputs ∈R γx,y −∑

0−inputs ∈R γx,y ≤ 1 to get the following implication about µ.

µ(R ∩ F−1(1))
c1

− µ(R ∩ F−1(0))
c0

≤ 1

=⇒ µ(R ∩ F−1(1))− 1
ε′
µ(R ∩ F−1(0)) ≤ 1

2rect1
ε′(F )

=⇒ µ(R ∩ F−1(0)) ≥ ε′
(
µ(R ∩ F−1(1))− 1

2rect1
ε′(F )

)
.

We now show that this distribution gives us a good corruption bound. Let R be a
rectangle that is not ε-corrupt, i.e. µ(R ∩ F−1(0)) ≤ εµ(R ∩ F−1(1)). Combining this
with the above, we get that ε/ε′µ(R ∩ F−1(1)) ≥ µ(R ∩ F−1(1))− 1

2rect1
ε′ (F ) , or

µ(R ∩ F−1(1)) ≤ 1
2rect1

ε′(F )(1− ε/ε′) .

That is, all non-corrupt rectangles must have small 1-mass. Since they are not ε-corrupt,
their 0-masses must also be at most an ε-fraction of this. Hence their whole masses can
be upper bounded as µ(R) ≤ 1+ε

2rect1
ε′ (F )(1−ε/ε′) . So any rectangle with µ(R) greater than

this must be ε-corrupt. Hence corr1
ε (F ) ≥ 2rect1

ε′ (F )(1−ε/ε′)
1+ε .

Interestingly the smooth rectangle bound is so named because it follows by generalizing
the rectangle bound as follows [JK10]: Given a function f , find a function g that is close to f
under a suitable probability distribution. The maximum such rectangle bound you can get
from a g would be the smooth rectangle bound of f .

Note that the rectangle bound follows by relaxing the approximation guarantee of the
smooth rectangle bound and the approximate rank bound follows by relaxing the nonnegativity
constraint of the approximate nonnegative rank bound. So although both corruption and
approximate rank are no larger than the approximate nonnegative rank (recall that we men-
tioned that approximate nonnegative rank and smooth rectangle bound are nearly equivalent),
it is unclear whether one of them dominates the other. Although we prove in Chapter 4 that
even the smaller of the two one-sided corruption bounds can be far larger than approximate
rank, it is unknown whether the larger of the two one-sided corruption bounds is always at
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least as large as the approximate rank.

The γα2 Measure

Since γ2 is a norm, γ2 (∑ piFi) ≤
∑
piγ2(Fi). For a public coin protocol Π, the probability-

of-acceptance matrix MΠ is exactly ∑i piΠi where the pis form a distribution. Since each Πi

has cost at most 2c, γ2(Πi) and hence γ2(MΠ) is at most 2c. This gives us the requisite lower
bound of Rcc

ε (F ) ≥ log γ2,ε(F ).

The above reasoning would also show that γ2,ε(F ) ≤ srect1
ε(F ), since γ2(R) = 1 for any rectangle R.

However, “approximate γ2” is not defined in this way. One writes approximate norms a
bit differently. The reason will become clear when we look at γ∞2 . For the actual definition,
we need to look at functions that output values in {−1, 1}. (For clarity, let us call their
communication matrices sign matrices.)

The transformation t → 2t − 1 does the required change from {0, 1} to {−1, 1}. Consequences of this
transformation are: the rank changes by at most 1, nonnegative ranks don’t make sense, approximate rank
also changes by at most 1 (with the error suitably changed to 2ε), and the γ2 norm changes to at most
twice its previous value, plus 1. Now that that’s out of the way, let us look at the definition of γα2 .

Definition 3.2.26 (γα2 [LS09d]). For a function F with sign matrix M , γα2 (F ) is defined as
minM ′:1≤M [x,y]M ′[x,y]≤α γ2(M ′).

Consider a cost-c public coin protocol Π computing F to within error 1
2(1− 1

α). Let MΠ

be the probability-of-acceptance matrix as defined a few paragraphs ago. The entries of MΠ

are in [0, 1
2 − 1/2α] ∪ [1

2 + 1/2α, 1]. The entries of α(2MΠ − J) are in [−α,−1] ∪ [1, α]. Since
γ2(MΠ) ≤ 2c, we have γα2 (F ) ≤ α(2 · 2c + 1).

Lower Bound 10: γα2 [LS09d]

Rcc
ε (F ) ≥ log

(
γα2 (F )
α − 1

)
− 1 where α = 1

1−2ε .a

aThis can also be written as Rcc
ε (F ) ≥ log

(
γα2 (F )
α

)
− 2 since log(x)− 2 ≤ max{log(x− 1)− 1, 0}.

It was conjectured [LS09d] that Rcc
1/3(F ) could be polynomially related to the logarithm of

approximate γ2. This conjecture turns out to be almost equivalent to the Log-Approximate-
Rank Conjecture since γα2 is closely related to approximate rank. Similar to the definition of
γα2 , rankα(F ) can be defined as the minimum rank among matrices M that sign-agree with
the sign matrix of F and have values in [−α,−1] ∪ [1, α]. It is essentially rankε(F ), where ε is
around 1

2 −
1

2α . From Observation 3.2.12, we can see that γα2 (F ) ≤ α
√

rankα(F ). We will look
at a lower bound for γα2 in terms of rankα(F ) in Section 3.4.

We now move to γ∞2 , the most accomplished of the approximate γ2 norms. It is defined by
setting α to ∞ in the definition of γα2 .
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Note that if we had defined γ2,< 1
2

the way we defined sign rank, then γ2,< 1
2

would tend to 1
2 for every

function F . This is because the matrix J/2 +F/1000 does approximate the matrix of F to within half, but
has γ2 norm ≤ 1

2 + γ2(F )/1000. This is also to be expected, as every function has a public coin protocol
of cost 2 and advantage greater than 0: Alice sees the first n public coin tosses, and sends Bob a 1 if those
tosses matched her input. Bob then sends Alice the output of the function. If Alice sent a 0, Bob would
send a uniformly random bit to Alice and they would output that. The protocol outputs correctly with
probability 1

2 + 1/2n+1 on every input.

Let us define Rcc
weak,< 1

2
(F ) to be the minimum, over all public coin protocols that output

the correct answer with probability ≥ 1
2 + δ on every input, of the cost of the protocol plus

log(1/δ). This measure is called the weakly unbounded error communication cost [BFS86].

Theorem 3.2.27.F log(γ∞2 (F )) + 2 ≥ Rcc
weak,< 1

2
(F ) ≥ log(γ∞2 (F ))− 1.

The above theorem is known via a measure known as discrepancy. Logarithm of the discrepancy of F is
known, via distributional complexity, to be an additive constant away from Rcc

weak,< 1
2
(F ) [CG85, Kla07]. It

is also known that the logarithms of discrepancy and γ∞2 are the same up to an additive constant [LS09c],
using LP duality and Grothendieck’s inequality. The proof presented here is much simpler and does not
involve any duality.

Proof. Let’s start with the lower bound. Let Π be a cost-c public coin protocol that
witnesses Rcc

weak,< 1
2
(F ) = r. Say Π outputs the correct answer with probability ≥ 1

2 + δ

on all inputs. Our lower bound gives us that the cost of Π is at least log
(
γ

1/2δ
2 (F )
1/2δ

)
− 2.

Hence

r ≥ log
(
γ

1/2δ
2 (F )
1/2δ

)
− 2 + log(1/δ)

≥ log(γ1/2δ
2 (F ))− log(1/2δ)− 2 + log(1/δ)

= log(γ1/2δ
2 (F ))− 1 ≥ log(γ∞2 (F ))− 1.

Let r = γ∞2 (F ). Before we get to the communication protocol, we do some preprocessing.
By definition, there is a matrix M with entries in (−∞,−1] ∪ [1,∞) that agrees in sign
with the sign matrix of F and has a decomposition M = XY , with each row of X having
`2 norm at most

√
r and each column of Y having `2 norm at most

√
r. We add two

extra coordinates to the rows of X and to the columns of Y so that each row of X has
`2 norm exactly

√
r and each column of Y has `2 norm exactly

√
r without changing the

inner product of any row and column. (Hence XY is still M .) Given the maximum row
and column norms of X and Y respectively, we know by the Cauchy-Schwarz inequality
that the maximum entry in M (in absolute value) is at most r. Finally, we scale M
by 1/r to get a matrix with values in [−1,−1/r] ∪ [1/r, 1] that has a decomposition
M = XY where each row of X and each column of Y has `2 norm exactly 1.
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Now for each input x, Alice has a vector vx = X[x, ∗] of norm 1 and for each input y,
Bob has a vector vy = Y [∗, y] of norm 1. They want to distinguish between the cases
〈vx, vy〉 ∈ [−1,−1/r] and 〈vx, vy〉 ∈ [1/r, 1], outputting −1 in the former case and 1 in
the latter case. They wish to give the correct output with probability around 1

2 + 1/r.
We will use randomized rounding [GW95] in order to accomplish this.
Let k be such that vx, vy ∈ Rk and let a = 〈vx, vy〉. Alice and Bob use public coins to
choose a uniformly random unit vector wr in Rk. Alice sends Bob sign(〈vx, wr〉). If it
matches sign(〈vy, wr〉), Bob outputs 1. Else Bob outputs −1. To analyze the probability
of being correct, consider the component of wr in the span of vx and vy. The signs
only depend on this component. In this two-dimensional space, vx and vy have angle
cos−1(a) between them. The perpendicular to the component of wr has probability
2cos−1(a)/2π of landing between them and making the two signs different. Hence the
probability Bob outputs 1 is

1− cos−1(a)/π = 1− π/2− sin−1(a)
π

= 1
2 + sin−1(a)

π
.

For all a ∈ [−1, 1], sin−1(a)
a ∈ [1, π2 ]. So for a ∈ [1/r, 1], Bob outputs 1 with probability

at least 1
2 + 1/r and for a ∈ [−1,−1/r] Bob outputs −1 with probability at least 1

2 + 1/r.
Since the cost of the protocol is 2 bits, we get an upper bound of Rcc

weak,< 1
2
(F ) ≤ 2+log(r).

One other measure of note here before we wrap up this section on communication measures
is that of the `1 norm of the Fourier coefficients (see Definition 3.1.3) of F , which we shall
hereby refer to as the spectral norm of F , or

∥∥∥F̂∥∥∥
1
. Note that having a small protocol in no

way guarantees small spectral norm. For instance, the function that computes the F2 inner
product of the first and second halves of Alice’s input requires only 1 bit to communicate to
Bob, but has a large spectral norm. However, Grolmusz observed [Gro97] that all functions
with small spectral norms seemed to have small randomized communication protocols. Buoyed
by his observation in a previous paper [Gro96] that the number-on-forehead communication
complexity with logn players7 is at most polynomial in the logarithm of the `1 norm, Grolmusz
makes the following conjecture.

7We will not be explaining any of those terms in this thesis.
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Conjecture 3.2.28: Grolmusz’s Conjecture [Gro97]

There exists a universal constant α such that for any total communication function F ,
we have that Rcc

1/3(F ) ≤ O
(
logα

(∥∥∥F̂∥∥∥
1

))
.

This conjecture has been proven false in this thesis in Chapter 4.

Grolmusz referred to this as a randomized analogue of the Log-Rank Conjecture. This
was not unjustified since, as will be implied by Grolmusz’s Theorem (Theorem 3.4.2), this
conjecture is essentially true if the Log-Approximate-Rank Conjecture is.

Lemma 3.2.29 (LARC implies Grolmusz’s conjecture). For any function F : {0, 1}n ×
{0, 1}n → {0, 1},

R1/3(F ) ≤ logO(1) rank1/3(F ) =⇒ R1/3(F ) ≤ (log
∥∥∥F̂∥∥∥

1
+ logn)O(1).

Proof. Let w =
∥∥∥F̂∥∥∥

1
. Theorem 3.4.2 implies the existence of a function G =∑

S⊆[2n] cSχS such that |G(x) − F (x)| ≤ 1/3 for all x ∈ {0, 1}n × {0, 1}n and

spar(G) = O(
∥∥∥F̂∥∥∥2

1
n).

Next, note that for any S ⊆ [2n], the function cSχS is a matrix of rank at most
1. By the sub-additivity of rank, log rank(G), and thus log rank1/3(F ), is at most
O(log

∥∥∥F̂∥∥∥
1

+ logn).

Grolmusz was only able to show a quadratic upper bound on the randomized communication
complexity of a function in terms of its spectral norm.

3.3 Measures for Query Functions

3.3.1 Deterministic

Recall from Observation 2.2.2 that a cost-c deterministic parity decision tree is a depth c

binary tree which has, among others, the following properties.

• Each leaf corresponds to an affine space of codimension at most c.

• The affine spaces at the leaves partition the whole input space.

• The output of the decision tree on any input is the label of the leaf that the input lands
in.

Akin to the rectangle partition number, we can define the large affine space partition
number lower bound.
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Large Affine Space Partition

Definition 3.3.1 (Large Affine Space Partition Number). Let LargeAffSpace1(f) be defined
as the minimum number k for which there exist disjoint affine spaces of codimension ≤ k,
say {Si}i∈[t] such that

⋃
i∈[t] Si = f−1(1). We similarly define LargeAffSpace0(F ) with f−1(0)

instead.

Note that the constraint that the codimension is at most k implies that the number of
affine spaces is at most 2k, since they form a partition.

Lower Bound 11: Large Affine Space Partition Number

D⊕(f) ≥ LargeAffSpace1(f).

Similar to the rectangle partition number, this lower bound is quadratically tight. This is
easy to see given the following observation, wherein a linear form ` being set in an affine space
S means that ∀x1, x2 ∈ S, 〈`, x1〉 = 〈`, x2〉.

Observation 3.3.2. If S1 and S2 are disjoint affine spaces, then there is a linear form ` such
that ` is set in both S1 and S2.

Before we formally prove the observation, we will see why it implies that the lower bound
is quadratically tight. We give an upper bound of D⊕(f) ≤ LargeAffSpace1(f)2. Simply choose
an affine space of the partition and query all the constraints that it sets. If the input is in
the affine space, output 1. Else, every subspace in the partition has a linear constraint set,
and so they either become empty or have codimension ≤ LargeAffSpace1(f) − 1. Hence we
can continue this at most LargeAffSpace1(f)− 1 more times. If the input is never in a 1-affine
space, then output 0. The number of queries made is at most LargeAffSpace1(f)2.

Proof. Let `1,1, `1,2, . . . , `1,k1 be a basis of linear forms set by S1 to a1,1, a1,2, . . . , a1,k1

respectively. Let `2,1, `2,2, . . . , `2,k2 be a basis of linear forms that are set by S2 to
a2,1, a2,2, . . . , a2,k2 respectively. If any `1,i is the same as `2,j the observation is true
and we are done. Otherwise we create the affine subspace S1 ∩ S2 iteratively by adding
the linear constraints in the order listed above. Since S1 ∩ S2 = ∅, at some point a
linear constraint `2,i = a2,i is added that makes the affine subspace empty. This implies
that `2,i is dependent on {`1,j}j∈[k1] ∪ {`2,j}j∈[i−1]. This dependency must involve
some constraints from S1. Writing down this dependency, we get that there are sets
I1 ⊆ [k1], I2 ⊆ [i] such that ∑j∈I1 `1,j = ∑

j∈I2 `2,j . This proves the observation.

Sparsity, Spectral Norm and Parity Kill Number

A less combinatorial and more algebraic measure is that of Fourier sparsity. (We will simply
refer to this as sparsity.) Recall the definition of Fourier coefficients (Definition 3.1.3).
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Definition 3.3.3 (Sparsity). Define the sparsity of a function f : {0, 1}n → R as follows.

spar(f) :=
∣∣∣{S ⊆ [n] | f̂(S) 6= 0}

∣∣∣ .
The Fourier representation of an affine space is easy to describe. Let A be an affine space

of codimension k defined as ∧t∈[k]⊕j∈Stxj = at. The indicator function of A is represented by
the polynomial

pA(x) =
∏
t∈[k]

(1 + (−1)atχSt(x)
2

)
.

From the above, we see that the indicator functions of affine spaces of codimension k have
sparsity 2k. So for f computed by a depth d parity decision tree.

spar(f) ≤ 22d.

This gives us a simple lower bound.
Lower Bound 12: Sparsity

D⊕(f) ≥ log spar(f)
2 .

Conjecture 3.3.4: The Log-Rank Conjecture for XOR functions

There exists a universal constant α such that for any total function f , we have that
D⊕(f) ≤ O(logα(spar(f))).

As its name may have implied, this conjecture has very intricate connections with the
Log-Rank Conjecture. For any function f : {0, 1}n → R, we have that spar(f) = rank(f ◦XOR)
(see Theorem 3.5.2). We know that 2D⊕(f) ≥ Dcc(f ◦ XOR) and Hatami, Hosseini and
Lovett [HHL18] showed that D⊕(f) ≤ Õ(Dcc(f ◦ XOR)6). Hence the above conjecture is
equivalent to the Log-Rank Conjecture restricted to the class of XOR functions.

Another fundamental measure of functions is that of spectral norm.

Definition 3.3.5 (Spectral norm). Define the spectral norm of a function f : {0, 1}n → R as
follows. ∥∥∥f̂∥∥∥

1
:=

∑
S⊆[n]

|f̂(S)|.

From the Fourier representation of affine spaces given above, we see that the spectral
norm of the indicator function of an affine space is 1. So a function f computed by a depth k
PDT must satisfy

∥∥∥f̂∥∥∥
1
≤ 2k. More generally, a function f computed by a PDT with t leaves

must satisfy
∥∥∥f̂∥∥∥

1
≤ t. We denote this measure of the number of leaves required in a PDT

computing f as D⊕,leaf(f). This measure has been used before. In fact it was conjectured that
any Boolean function with small

∥∥∥f̂∥∥∥
1

can be written as a small sum/difference of indicator
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functions of affine spaces [STV17]. The best known upper bound for this conjecture comes
from constructing a parity decision tree with a small number of leaves.

It is easy to see that
∥∥∥f̂∥∥∥

1
≤
√

spar(f). To see so, one merely constructs the vector v
of absolute values of non-zero Fourier coefficients of f , and the all-1 vector w of the same
dimension as v. The dimension of these vectors is spar(f). The sum of the entries of v is∥∥∥f̂∥∥∥

1
. The Cauchy-Schwarz inequality states that 〈v, w〉2 ≤ 〈v, v〉〈w,w〉. This amounts to∥∥∥f̂∥∥∥2

1
≤ 1 · spar(f), since the sum of squares of Fourier coefficients is at most 1 for Boolean

functions (Theorem 3.1.4).
As we will see in Section 3.5, it will turn out that

∥∥∥f̂∥∥∥
1

= γ2(f ◦ XOR). As log γ2(F )

was a lower bound for PEQcc(F ), similarly we have seen that log
∥∥∥f̂∥∥∥

1
is a lower bound for

log D⊕,leaf(f). However, there is another model of PDTs that is equivalent to log D⊕,leaf , but is
a better analogue of PEQcc.

Let us strengthen the model of PDTs by allowing the decision algorithm to query affine
spaces. A node labeled with an affine space S will direct the algorithm to its right child if
x ∈ S, and to the left child otherwise. The minimum depth of a tree, over all affine space
decision trees computing f , is denoted as D∧⊕(f).

Theorem 3.3.6. D∧⊕(f) ∈
[
Ω
(

log D⊕,leaf(f)
log(n+1)

)
, O(log D⊕,leaf(f))

]
Proof. Any depth d affine space decision tree can be converted to a parity decision tree
with nO(d) = 2O(d logn) leaves. Simply replace each affine space query S with the parity
decision tree TS computing whether x ∈ S. TS has co-dim(S) 0-leaves and one 1-leaf.
Every 0-leaf of TS is replaced with a copy of the left child of the S-query node, and the
1-leaf is replaced with the right child of the S-query node. Continue these substitutions
until only parity queries are left in the tree. Any leaf ` of the new tree can be specified
by specifying, for each node of the original tree, which of the at most n+ 1 leaves of the
node’s replacement tree should be taken to reach `. This yields at most (n+ 1)d leaves.

One can also convert a parity decision tree with t leaves into an affine space decision
tree of depth O(log t). This follows a well known technique of balancing trees [Spi71].
This technique is applicable when it is easy to test whether the input will pass through
a specific node v. Since we start with parity decision trees, every node v corresponds
to an affine space. An affine space query can easily check whether the input will pass
through v.
The technique is simple. An unbalanced node is defined as a node whose right subtree
has more than twice as many leaves as its left subtree, or vice versa. If such a node
does not exist in the tree, then any node at depth d has at most a (2/3)d fraction of
the tree’s leaves under it, and so the depth of the tree is at most log3/2 t. To balance
the tree, we start at the root. We ensure that the root is balanced, and then recursively
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balance the subtrees under it. In case the root v is unbalanced, we balance it as follows.

• Let tv be the number of leaves in the subtree rooted at v.

• Starting from v, repeatedly move to the child that has a higher number of leaves
under it, breaking ties arbitrarily. Stop when you reach a node w with between
tv/3 and 2tv/3 leaves under it. You will reach such a node since the number of
leaves must reach 1 eventually and they decrease by at most a factor of 1/2 each
time.

• Replace the subtree rooted at v with the following subtree that computes the
same function.

– The root is the affine space query of whether the input reaches w.

– The right child of the root is the subtree rooted at w.

– The left child of the root is the subtree rooted at v, but with the subtree
rooted at w removed. Note that this also makes w’s parent useless, and it
can be replaced with w’s sibling.

This substitution leaves the number of leaves unchanged, yet the node v has been
replaced with a root node that is balanced. The subtrees of the root node are made
purely of parity queries, so we can recursively balance those subtrees as well.

3.3.2 Parity Kill Number

Another measure of interest is the parity kill number, defined as follows.

Definition 3.3.7 (Parity Kill Number). The parity kill number of f is defined as

C⊕min(f) , min {co-dim(S)|S is an affine subspace on which f is constant} .

It is clear that if T is a parity decision tree computing f , then every leaf of T must be at
depth at least C⊕min(f). On the other hand, by querying C⊕min(f) parities, one can reduce the
problem to one with at most half the original sparsity. (See Theorem 3.3.8 below.) If one can
show that there is a constant c such that for every f , C⊕min(f) ≤ logc spar(f), this would imply
that D⊕(f) ≤ logc+1 spar(f), and it would be equivalent to proving Conjecture 3.3.4.

Theorem 3.3.8 (C⊕min Queries Reduces Sparsity [STV17]). Let f be monochromatic on the
affine space defined by the constraints 〈w1, x〉 = a1, 〈w2, x〉 = a2, . . . , 〈wk, x〉 = ak. Then for
any b1, b2, . . . , bk, f restricted to the affine space 〈w1, x〉 = b1, 〈w2, x〉 = b2, . . . , 〈wk, x〉 = bk

has sparsity at most spar(f)/2.
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Proof. Consider the function f ′ defined as the restriction of f to the affine space defined
by the constraints 〈w1, x〉 = b1, 〈w2, x〉 = b2, . . . , 〈wk, x〉 = bk. f ′ is a Boolean function
whose domain is an n−k-dimensional space. Let v1, . . . , vn−k be an extension of the w’s
to a basis of the whole n-dimensional space. The Fourier basis of the space of functions
on an n − k-dimensional space spanned by v1, . . . , vn−k is the set of parity functions
of the form {χv} where v is in the span of v1, . . . , vn−k. Each χS(x) can be written as
χv(x)χw(x) for some v and w in the spans of v1, . . . , vn−k and w1, . . . , wk respectively.
Hence

f(x) =
∑
S

f̂(S)χS(x)

=
∑
v

∑
w

f̂(v + w)χv(x)χw(x)

=
∑
v

(∑
w

f̂(v + w)χw(x)
)
χv(x)

and f̂ ′(v) = ∑
w f̂(v+w)χw(x), where χw(x) is a constant depending only on b1, . . . , bk.

We can thus see that the Fourier coefficients of f ′ (let us refer to them as the “new”
coefficients) are linear combinations of Fourier coefficients of f (the “old” coefficients).
No “old” coefficient appears in the linear combinations of two different “new” coefficients.
We know the Fourier spectrum of f when restricted to the affine subspace 〈w1, x〉 =
a1, 〈w2, x〉 = a2, . . . , 〈wk, x〉 = ak. It has at most one non-zero Fourier coefficient, whose
value is 1 if it exists. This means that for every non-zero “old” coefficient, there must
have been at least one other non-zero “old” coefficient that combined with it in order to
change the value of the “new” coefficient to either 0 or 1.
Note that which “old” coefficients combine together does not depend on the values of
a1, . . . , ak. So even in the function f ′, every non-zero “old” coefficient combines with
another non-zero “old” coefficient. Hence the number of non-zero “new” coefficients is
at most half the number of “old” coefficients.

Given the above theorem, a PDT of depth (maxaffine subspace A C⊕min(f |A))·log spar(f) follows.

The upper bound in terms of nonnegative rank, when applied to a function f ◦ XOR, yields a protocol
much like the one above.

The best known upper bound on C⊕min(f) is C⊕min(f) ≤ O(
∥∥∥f̂∥∥∥

1
) [TWXZ13]. Since

∥∥∥f̂∥∥∥
1
≤

spar(f), an upper bound of logO(1)
∥∥∥f̂∥∥∥

1
would imply the Log-Rank Conjecture for XOR

functions.
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Conjecture 3.3.9: The Parity Kill Number Conjecture [TWXZ13]

C⊕min(f) ≤ logO(1)
∥∥∥f̂∥∥∥

1
.

This conjecture has been proven false in this thesis in Chapter 4.

3.3.3 Randomized

We now move on to randomized parity decision trees. Recall that a cost-c randomized parity
decision tree is a distribution on depth c binary trees, each of which having, among others,
the following properties.

• Each leaf corresponds to an affine space of codimension at most c.

• The affine spaces at the leaves partition the whole input space.

• The output of the protocol on any input is the label of the leaf that the input lands in.

The probability of a randomized parity decision tree outputting a 1 is a convex combination
of the outputs of the constituent deterministic parity decision trees. Since each cost-k
deterministic parity decision tree computes a function f with

∥∥∥f̂∥∥∥
1
≤ 2k, it follows that the

probability of an RPDT outputting a 1 is also computed by a function of spectral norm at
most 2k.

If f : {0, 1}n → {0, 1} is computed by a cost-k randomized parity decision tree with error
≤ ε, then the probability of outputting a 1 on an input z should also be within ε of f(z).
Hence f is pointwise close to a function with spectral norm ≤ 2k. This gives us a lower bound
in terms of the approximate spectral norm.

Definition 3.3.10 (Approximate Spectral Norm). For a function f the ε-approximate spectral
norm of F , which we denote as

∥∥∥f̂∥∥∥
1,ε

, is defined as

min
g:||f−g||∞≤ε

‖ĝ‖1 .

Lower Bound 13: Approximate Spectral Norm

R⊕ε (f) ≥ log
∥∥∥f̂∥∥∥

1,ε
.

Note that a similar lower bound does not immediately follow for approximate sparsity. In
fact logarithm of the approximate sparsity is not a lower bound for RPDTs. For instance,
take the AND function on n bits. It is well known to have a constant size randomized parity
decision tree involving random hashes. On the other hand, it has approximate sparsity at
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least Ω(n). (This can be derived from Theorem 3.2.15 and the fact that the AND ◦ XOR
function, equivalent to the equality function, has deterministic communication complexity
n+ 1.) However, it turns out that Ω(log spar1/3(f)− logn) is a lower bound on the randomized
parity decision tree complexity. The proof of this is via Theorem 3.4.2, which shows that
approximate sparsity and approximate spectral norm are related.

A reason why approximate sparsity is not by itself a lower bound, unlike approximate rank, is that
approximate rank only gives a lower bound for private coin communication protocols. Randomized PDTs
do not have a notion of privacy in their random coins, so it should be the public coin lower bounds in
communication complexity that have analogues here.

The weakly unbounded error PDT complexity of a function f is defined analogously to
the corresponding communication complexity measure: R⊕weak,< 1

2
(F ) is the minimum, over all

randomized PDTs that output the correct answer with probability ≥ 1
2 + δ on every input, of

the depth of the tree plus log(1/δ).
We define the margin complexity of f as an approximate spectral norm measure, the way

γ∞2 is defined given γ2. We now think of f as a function outputting 1 or −1.

Definition 3.3.11 (Polynomial Margin). For a function f : {0, 1}n → {−1, 1}, margin(f)
is defined as ming:1≤g(z)f(z) ‖ĝ‖1. That is, it is the minimum sum of the absolute values of
coefficients of any real polynomial g that computes f in the sense that f(z)g(z) ≥ 1 for all z.

The polynomial margin of f is actually the inverse of the minimum margin that a sign-representing
polynomial for f of unit weight (sum of absolute values of coefficients) can achieve. It is easy to see that
the above definition gives the same quantity.

Theorem 3.3.12. log(margin(f)) + 2 ≥ R⊕weak,< 1
2
(f) ≥ log(margin(f))− 1.

Proof. Given a g : {0, 1}n → R that minimizes the expression in the definition of
polynomial margin, we can come up with an efficient RPDT. Sample S ⊆ [n] according
to the distribution that is proportional to |ĝ(S)|. Output χS(z)sgn(ĝ(S)). The expected
value of the output is ∑

S

ĝ(S)
‖ĝ‖1

χS(z) = g(z)
‖ĝ‖1

.

So on every input, the correct answer is output with probability ≥ 1
2 + 1

2‖ĝ‖1
, and this

protocol has a weakly unbounded error cost of 1 + log(2 ‖ĝ‖1) ≤ 2 + log(margin(f)).

The lower bound on R⊕weak,< 1
2
(f) follows from the statement D⊕(f) ≥ log

∥∥∥f̂∥∥∥
1

in
exactly the same way as the lower bound on Rcc

weak,< 1
2

follows from the statement
Dcc(F ) ≥ log γ2(F ) (see proof of Theorem 3.2.27 and its preceding analysis).
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3.4 A Bridge Between Counting and WeighingF

Here we present various theorems connecting measures that we have seen. Of them, the first
four are of a very similar nature. Indeed, their proofs share the same framework. This chapter
merely reproduces these known proofs but phrased in this new framework. The four are as
follows. (Query functions are on n bits and communication functions are on n+ n bits.)

• Grolmusz’s Theorem: sparδ(f) ≤ O(
∥∥∥f̂∥∥∥2

1,ε
n/(δ − ε)2)

• Newman’s Theorem: Rcc
pri,δ(F ) ≤ Rcc

ε (F ) + dlog(2n) + 2 log(1/(δ − ε))e

• rankδ(F ) ≤ O(γ1/(1−ε)
2 (F )2(1− ε)2n/(δ − ε)2)

• rank+
δ (F ) ≤ O(srect1

ε (F )2n/(δ − ε)2)

We will also see a fifth connection, stating that srect1
2δ(F ) ≤ rank+

δ (F ).
The former four follow the following format. On the left hand size of the inequality, we

want to bound the complexity of a target function by the minimum “count” of simple functions
needed to approximate the target function (the relevant measure in Newman’s theorem will be
clear from the proof). On the right hand side we have that our target function is approximated
as a low-weight combination of the simple functions. Then we follow the following steps.

1. This low-weight combination of the simple functions allows us to approximate the target
function as a distribution over simple functions.

2. We then use Hoeffding’s Lemma to say that for any for any fixed input x, with (very)
high probability the average of a few samples from the distribution should approximate
the target function. Since we are representing it with only a few samples, this means
that the “count” of simple functions being used is small. (To get the optimal parameters
in the theorem relating γα2 and rankδ, we will have to resort to a different concentration
bound that does not assume boundedness.)

3. We finally use a union bound to say that with non-zero probability the average of a few
samples from the previous step actually approximates the function at all points.

Lemma 3.4.1 (The “Essentially Hoeffding” Framework for Low-Count Approximations). Let
δ > ε ≥ 0 and f : {0, 1}n → {0, 1} be ε-approximated by a real function g : {0, 1}n → R.
Let H be a distribution over a set of functions such that for all x, g(x) = Eh∼H[h(x)], with
each h bounded in [−r, r]. Then there is a g′ : {0, 1}n → R that δ-approximates f such that
g′ = 1

t

∑
i∈[t] hi, where t ≤ O(r2n/(δ − ε)2).

Proof. Fix an x ∈ {0, 1}n. Let us take t samples h1, h2, . . . , ht from the distribution of h.
Hoeffding’s Lemma (Lemma 3.1.1) says that Prh1,...,ht [|Eh[h(x)] − 1

t

∑
i∈[t] hi| ≥ δ − ε] ≤

2 exp(−2(δ−ε)2t2

4tr2 ).
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We can get this probability below 2−n if we set t = O(r2n/(δ − ε)2). Then by a union
bound, we get that with probability greater than 0,

∀x ∈ {0, 1}n |E
h

[h(x)]− 1
t

∑
i∈[t]

hi| ≤ δ − ε

and hence 1
t

∑
i∈[t] hi is a (δ − ε)-approximation to g and a δ-approximation to f .

We now prove the four connections using the above framework.
Grolmusz’s Theorem had its roots in a paper by Bruck and Smolensky [BS90], and was

strengthened by Grolmusz [Gro97] and Zhang [Zha14]. We write it in slightly more generality
here.

Theorem 3.4.2 (Grolmusz’s Theorem [BS90, Gro97, Zha14]). For any f : {0, 1}n → {0, 1}
and δ > ε ≥ 0,

sparδ(f) ≤ O(
∥∥∥f̂∥∥∥2

1,ε
n/(δ − ε)2).

Proof. Let g : {0, 1}N → R be a function witnessing
∥∥∥f̂∥∥∥

1,ε
. Consider the functions hα(x) =

‖ĝ‖1 sign(ĝ(α))χα(x), with the distribution over them being the following: hα is chosen with
probability |ĝ(α)|/ ‖ĝ‖1.

Clearly each hα is bounded in [−‖ĝ‖1 , ‖ĝ‖1]. Furthermore, Eh[hα(x)] = ∑
ĝ(α)χα(x) =

g(x).
Using Lemma 3.4.1, we get a function g′ that is a sum of at most O(‖ĝ‖21 n/(δ − ε)2)

monomials that δ-approximates f . Since
∥∥∥f̂∥∥∥

1,ε
= ‖ĝ‖1, the theorem follows.

We now see Newman’s Theorem.

Theorem 3.4.3 (Newman’s Theorem [New91]). Let δ > ε ≥ 0 and F : {0, 1}n × {0, 1}n →
{0, 1} such that Rcc

ε (F ) = c. Then Rcc
pri,δ(F ) ≤ c+ dlog(2n) + 2 log(1/(δ − ε))e.

Proof. Let Π be a cost-c protocol that computes F to within ε error, and let p : {0, 1}n ×
{0, 1}n → R be the function outputting the probability that Π outputs 1 on an input. pε-
approximates F .

Π gives a distribution D over cost-c deterministic protocols such that ED∼D[D(x, y)] =
p(x, y). Each D is a function outputting values in {0, 1}.

Hence Lemma 3.4.1 says that there is a function p′ that δ − ε-approximates p such that p′

is the average of t = O(2n/(δ − ε)2) cost-c deterministic protocols h1, . . . , ht.
To end the proof, we note that there is a private coin randomized protocol Π′ that has

acceptance probability p′. Alice samples a random number i ∈ [t] and sends it to Bob. Alice and
Bob then run the deterministic protocol hi. It is easy to see that it has acceptance probability
p′ and hence error ≤ δ, and the cost of the protocol is ≤ c+ log(2n) + 2 log(1/(δ − ε)).

Note that this applies to more than just randomized communication complexity. For
instance, it also provides a way of converting an efficient quantum protocol that uses public
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randomness (and not entanglement) into an efficient quantum protocol in which the parties do
not share any randomness/entanglement beforehand.

Our next theorem shows that the approximate γ2 norm cannot be much smaller than
approximate rank, although the exact versions could be far smaller. This was proven by Lee and
Shraibman [LS09a], but the proof we give here goes via the proof of the Johnson-Lindenstrauss
Theorem [JL01] as proven by Indyk and Motwani [IM98].

Theorem 3.4.4. [[LS09a]] Let δ > ε ≥ 0 and F : {0, 1}n × {0, 1}n → {−1, 1} such that
γ

1/(1−ε)
2 (F ) = c. Then rankδ(F ) ≤ O(c2(1− ε)2n/(δ − ε)2).

Proof. The assumption in the theorem gives us a matrix representing F with certain properties
as given in the definition of γα2 . We scale it by 1− ε to get a matrix M ∈ R2n×2n with values
in [−1,−1 + ε]∪ [1− ε, 1] that sign agrees with the matrix of F and has the following property.
There exists a natural number d ∈ N, vectors {φx}x∈{0,1}n and {ψy}y∈{0,1}n , all in Rd, such
that M [x, y] = 〈φx, ψy〉 and maxx ‖φx‖ = maxy ‖ψy‖ =

√
c(1− ε).

This already gives us rankε(F ) ≤ d, but that could be very large. Instead we can use the
following distribution of rank-1 matrices.

Sample a random vector v ∈ Rd by sampling each coordinate to be uniformly at random
from {−1, 1}. Construct the vector vX ∈ R2n by setting the xth coordinate to be 〈v, φx〉.
Similarly construct the vector vY ∈ R2n by setting the yth coordinate to be 〈v, ψy〉. Construct
the rank-1 matrix h as the outer product of vX and vY . This matrix can be seen as a function
from {0, 1}n × {0, 1}n to R.

E
h

[h[x, y]] = E
v

∑
i∈[d]

viφx,i

∑
i∈[d]

viψy,i


=
∑
i∈[d]

E
v
[v2
i φx,iψy,i] +

∑
i 6=j∈[d]

E
v
[vivjφx,iψy,j ]

=
∑
i∈[d]

φx,iψy,i = 〈φx, ψy〉 = M [x, y]

Each entry of h is bounded in [−c2(1− ε)2, c2(1− ε)2], since 〈v, φx〉 ≤ ‖φx‖1 ≤ ‖φx‖22 ≤
c(1− ε) and similarly 〈v, ψy〉 ≤ c(1− ε). Using Lemma 3.4.1, we can conclude that there is a
matrix M ′ that δ-approximates F with rank at most t = O(c4(1− ε)4n/(δ − ε)2).

While the above is a nice result, it can be made tighter. Our function h was bounded in
[−c2, c2]. However it has a very thin tail and is concentrated within [−O(c), O(c)]. Using some
better analysis, we will see that the final bound can be improved to O(c2(1− ε)2n/(δ − ε)2).

Towards this, it is useful to make each entry of v an independent normal random variable
with mean 0 and variance 1 (as done by [IM98]). Note that E[v2

i ] = 1 and vi is distributed
identically to −vi, so this change of random variable does not change the expectation of h.
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Also observe that h[x, y] = 〈v, φx〉〈v, ψy〉 can be rewritten as

〈v, φx + ψy〉〈v, φx + ψy〉 − 〈v, φx〉〈v, φx〉 − 〈v, ψy〉〈v, ψy〉
2 .

Such a rewriting is useful for us because of the simple random variables that arise from it.
〈v, φx〉 is a sum of weighted normal distributions and is hence a normal distribution of mean 0
and variance φ2

x,1 + φ2
x,2 + · · ·+ φ2

x,d = ‖φx‖22. It can hence be thought of as ‖φx‖2 · N (0, 1).
Thus 〈v, φx〉〈v, φx〉 is distributed as ‖φx‖22 · N (0, 1)2. The sum of squares of k independent

standard (i.e. mean 0, variance 1) normal distributions is called a χ2 distribution with k

degrees of freedom. It has a strong concentration bound (see [LM00]), namely for such a
random variable X and γ ≤ 1,

Pr [X /∈ k(1± γ)] ≤ exp(−O(kγ2)).

This replaces Hoeffding for us, and we see that

Pr

1
t

∑
i∈[t]
〈vi, φx〉2 /∈ ‖φx‖22(1± γ)

 ≤ exp(−O(tγ2)).

Let v(1), . . . ,v(t) be random variables distributed as per the distribution of v above. Setting
γ = (δ−ε)

3c(1−ε) and t = O( c
2(1−ε)2n
(δ−ε)2 ), and observing that ‖φx‖22 ≤ c(1− ε), we can conclude that

Pr

1
t

∑
i∈[t]
〈v(i), φx〉2 /∈ ‖φx‖22 ± (δ − ε)/3

 < 2−2n−1. (3.1)

We have similar statements for ψy and φx + ψy. A simple application of the union bound
shows the existence of v(1), . . . , v(t) such that the above statement is simultaneously satisfied
for all φx, all ψy and all φx + ψy (there are at most 2n + 2n + 22n statements).

This suffices for our theorem, since this implies that for all x, y,∣∣∣∣∣∣1t
∑
i∈[t]
〈v(i), φx〉〈v(i), ψy〉 − 〈φx, ψy〉

∣∣∣∣∣∣ ≤
∣∣∣∣∣∣1t
∑
i∈[t]
〈v(i), φx〉2 − ‖φx‖22

∣∣∣∣∣∣ /2
+

∣∣∣∣∣∣1t
∑
i∈[t]
〈v(i), ψy〉2 − ‖ψy‖22

∣∣∣∣∣∣ /2
+

∣∣∣∣∣∣1t
∑
i∈[t]
〈v(i), φx + ψy〉2 − ‖φx + ψy‖22

∣∣∣∣∣∣ /2
≤ (δ − ε)/3 + (δ − ε)/3 + (δ − ε)/3

2 < (δ − ε)

and so the δ-approximate rank is at most t.
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We now move on to comparing approximate nonnegative rank and the smooth rectangle
bound.

Theorem 3.4.5 ([KMSY14]). For any F : {0, 1}n × {0, 1}n → {0, 1} and δ > ε ≥ 0,
rank+

δ (F ) ≤ O(srect1
ε (F )2n/(δ − ε)2)

Proof. Let srect1
ε (F ) = c. Recall from the definition that this implies the existence of a set of

rectangles R with nonnegative weights {wR}R∈R such that

• ∑
R wR = c,

• for all x, y ∈ F−1(1), ∑R3(x,y)wR ∈ [1− ε, 1] and

• for all x, y ∈ F−1(0), ∑R3(x,y)wR ∈ [0, ε].

Hence the function p(x, y) = ∑
R∈RwRR(x, y) is an ε-pointwise approximation of F where

the function R is the indicator function of R. Each function hR(x, y) = c ·R(x, y) is bounded
in [0, c]. Let us consider the distribution over the functions {hR}R∈R that chooses hR with
probability wR/c. Then Eh[h(x, y)] = ∑

wRR(x, y) = p(x, y).
Using Lemma 3.4.1, the proof is complete.

The above shows that the approximate nonnegative rank is not much larger than the
smooth rectangle bound. We finish this section with the result that it is not much smaller
either.

Theorem 3.4.6 ([KMSY14]). For any F : {0, 1}n ×{0, 1}n → {0, 1} and δ > 0, srect1
2δ(F ) ≤

rank+
δ (F )

Proof. Let rank+
δ (F ) = c. This means that there is a matrix M that is δ-close to F , and a

decomposition of M as a sum of at most c nonnegative rank 1 matrices, M1,M2, . . . ,Mc.
Central to the proof is the claim that any nonnegative rank 1 matrix whose maximum

entry is at most 1 can be written as a subconvex combination of rectangles. Note that by the
definition of nonnegative rank, a matrix M has nonnegative rank 1 if and only if there exist
vectors u and v such that M = u⊗ v.

Claim 3.4.7. Let u and v be nonnegative vectors in Rn such that u⊗v has its maximum entry
at most 1. Then there exist rectangles R1, R2, . . . , Rd with nonnegative weights w1, w2, . . . , wd

such that u⊗ v = ∑d
i=1wiRi and

∑d
i=1wi ≤ 1.

Proof. Since maxj uj · maxj vj is at most 1, u and v can be appropriately scaled without
changing u⊗ v to also ensure that max uj and max vj are at most 1.

Let the entries of u be, in increasing order, r1, r2, . . . , rk. Define sets A1, A2, . . . , Ak ⊆ [n]
as Ai , {j ∈ [n]|uj ≥ ri}. Similarly define s1, . . . , sk′ to be the entries of v and the sets
B1, . . . , B

′
k are defined analogously. Note that ∑i∈[k](ri − ri−1)1Ai = u, where r0 = 0.
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We can now represent u⊗ v as∑
i∈[k]

(ri − ri−1)1Ai

⊗
∑
i∈[k′]

(si − si−1)1Bi

 =
∑

(i,j)∈[k]×[k′]
(ri − ri−1)(sj − sj−1)Ri,j

where Ri,j = Ai×Bj . The sum of the weights of the rectangles is ∑i∈[k](ri− ri−1)∑j∈[k′](sj −
sj−1) = rksk′ = maxi ui maxi vi ≤ 1.

Let M be scaled by 1/(1 + δ) so that its maximum entry is at most 1. It now approximates
F to error 1− (1− δ)/(1 + δ) < 2δ and each Mi has their maximum entry at most 1.

We can now use Claim 3.4.7 to write each Mi as a sum of weighted rectangles, with the
weights adding up to at most 1. Adding up these for each Mi, we represent M as a sum of
weighted rectangles, with the sum of the weights being at most c. This concludes the proof of
the theorem.

Note that if approximate nonnegative rank also imposed that the entries of the approxi-
mating matrix be bounded in [−1, 1], then we would have no loss in the error parameter.

3.5 Lifting from Polynomial Measures to Matrix Measures

In this section, we will see that many query measures that we have seen for f lift to communi-
cation measures for f ◦ XOR.

The first two measures that we will look at are sparsity and spectral norm, which lift to
rank and trace norm, the latter defined as follows.

Definition 3.5.1. The trace norm of F , denoted ‖F‖tr, is the sum of the singular values of
the communication matrix of F . It can be defined as ‖F‖tr = trace

(√
MMT

)
, where M is

the communication matrix of F .8

We will not be proving that the trace norm is a norm. We prove the following.

Theorem 3.5.2.

1. rank(f ◦ XOR) = spar(f).

2. γ2(f ◦ XOR) = ‖f ◦ XOR‖tr /2n =
∥∥∥f̂∥∥∥

1
.

Proof. It is known using dual norms (see [LMSS07], section 3) that γ2(M) ≥ ‖M‖tr /2n

for all 2n × 2n matrices M . It is also easy to see that γ2(f ◦ XOR) ≤
∥∥∥f̂∥∥∥

1
, since γ2 is a

norm and γ2(g◦XOR) = 1 for any monomial g. Hence γ2(f ◦XOR) is sandwiched between
‖f ◦ XOR‖tr /2n and

∥∥∥f̂∥∥∥
1
. If we show that ‖f ◦ XOR‖tr /2n =

∥∥∥f̂∥∥∥
1
, this would prove

8Since MMT is a real symmetric positive semidefinite matrix, this is the same as the sum of the entries of
the diagonal matrix D obtained by diagonalizing MMT .
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that all three terms are equal. Both ‖f ◦ XOR‖tr /2n =
∥∥∥f̂∥∥∥

1
and rank(f◦XOR) = spar(f)

follow from Theorem 3.5.3.

Theorem 3.5.3 (Folklore). Let f : {0, 1}n → R, and F , f ◦ XOR. For each S ⊆ [n] the
vector vS, which is the “truth table” of χS, is an eigenvector of the communication matrix of
F with eigenvalue 2nf̂(S).

Proof. Let vS be the vector in {−1, 1}n defined as vS [x] = χS(x). Let M be the
communication matrix of F . Note that

(MvS)[x] =
∑

y∈{0,1}n
M [x, y]vS [y]

=
∑

y∈{0,1}n
f(x⊕ y)χS(y)

=
∑

y∈{0,1}n

 ∑
T⊆[n]

f̂(T )χT (x)χT (y)

χS(y)

=
∑
T⊆[n]

χT (x)f̂(T )

 ∑
y∈{0,1}n

χT (y)χS(y)


= χS(x)f̂(S)2n +

∑
T 6=S

χT (x)f̂(T ) · 0.

Since this gives us 2n orthogonal eigenvectors, this completely defines the spectrum of
the eigenvalues of the matrix.

When considering approximate measures, one might run into some trouble. Let the function
g be the most sparse function that is pointwise ε-close to f . So sparε(f) = spar(g). Therefore
g ◦ XOR would be pointwise close to f ◦ XOR and we can conclude that rankε(f ◦ XOR) ≤
rank(g◦XOR) = spar(g). However there may be another matrix M that is close to the matrix of
f ◦XOR with even less rank so the approximate rank of f ◦XOR might actually be smaller than
the approximate sparsity of f . We show, however, that the lifting theorem is approximately
true. To prove this, we first use the fact that the lifting theorem for approximate spectral
norm is exactly true, by which we mean the following theorem, a proof of which is outlined by
Lee and Shraibman [LS09b, Remark 7.2]. In the following, γ2,ε(M) refers to the minimum γ2

norm among matrices that are entrywise ε-close to M .

Theorem 3.5.4. Let f : {0, 1}n → R. Let M be a matrix that is pointwise ε-close to the matrix
of f ◦ XOR. There exists a function g that is pointwise ε-close to f such that ‖g ◦ XOR‖tr ≤
‖M‖tr and γ2(g ◦ XOR) ≤ γ2(M). Hence

∥∥∥f̂∥∥∥
1,ε

= ‖f ◦ XOR‖tr,ε /2n = γ2,ε(f ◦ XOR).
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Proof. Let us create the matrix Msym[x, y] = 1
2n
∑
z∈{0,1}nM [x⊕ z, y ⊕ z]. Consider a

term in the summation corresponding to z. Denoting this matrix as Mz, we can see
that Mz is M but with an involution (a permutation that is its own inverse) applied
to the rows and columns (row x maps to row x ⊕ z and similarly for the columns).
Hence, Mz = PzMPz (note that Pz = P−1

z = P Tz ). Now ‖Mz‖tr = trace
(√

MzMT
z

)
.

However, if MMT is diagonalized as V DV −1, then note that MzM
T
z is diagonalized as

(PzV )D(PzV )−1. Hence ‖Mz‖tr = ‖M‖tr, and since it is a norm, ‖Msym‖tr ≤ ‖M‖tr.
It is even easier to see that γ2(Mz) = γ2(M), since rearranging rows and columns does
not change the maximum row norm or the maximum column norm. Again, since γ2 is a
norm, γ2(Msym) ≤ γ2(M).
Msym[x, y] = 1

2n
∑

(x′,y′) s.t. x′⊕y′=x⊕yM [x′, y′]. Since each of the M [x′, y′] in the sum is
ε-close to F (x⊕ y) = f(z), so is Msym[x, y]. Since all (x, y) such that x⊕ y = z have
the same Msym[x, y], Msym is actually g ◦ XOR for some g that is ε-close to f .

Note that the above proof would also work when the notion of approximation is of the type
used in the definition of γα2 (Definition 3.2.26). As a direct consequence, we get the following
exact relation between polynomial margin (defined identically to the approximate spectral
norm ‖f‖∞1 ) and γ∞2 .

Theorem 3.5.5.F Let f : {0, 1}n → {−1, 1}. Then margin(f) = γ∞2 (f ◦ XOR).

Theorem 3.5.6.F Let f : {0, 1}n → R and ε > δ. Then sparε(f) ≥ rankε(f ◦ XOR) and

rankδ(f ◦ XOR) ≥ Ω
(

(ε− δ)2sparε(f)
n · (maxx|f(x)|+ δ)2

)
.

Proof. It is easy to see from Theorem 3.5.3 that sparε(f) ≥ rankε(f ◦ XOR). However,
combining Grolmusz’ Theorem (Theorem 3.4.2) with Theorem 3.5.4, we have

sparε(f) ≤ O


∥∥∥f̂∥∥∥2

1,δ
n

(ε− δ)2

 ≤ O
(
γ2,δ(f ◦ XOR)2n

(ε− δ)2

)
.

Now γ2(M) ≤
√

rank(M) maxi,j |M [i, j]| (Theorem 3.2.10). Setting M to be the matrix
witnessing rankδ(f ◦ XOR), we conclude that

rankδ(f ◦ XOR) = rank(M) ≥ γ2(M)2

(maxx|f(x)|+ δ)2 ≥
γ2,δ(f ◦ XOR)2

(maxx|f(x)|+ δ)2

≥ Ω
(

(ε− δ)2sparε(f)
n · (maxx|f(x)|+ δ)2

)
.
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We do not see any necessity for the rank1/3 lower bound to be a multiplicative factor of
n smaller than spar1/3. It would be interesting to see whether this lifting is also as tight as
approximate spectral norm’s lifting.

Conjecture 3.5.7: Sparsity Lifting

Let f : {0, 1}n → {0, 1}. Then rank1/3(f ◦ XOR) = Θ(spar1/3(f)).

We can now combine the fact that margin(f) = γ∞2 (f ◦ XOR) with the facts that
log margin(f) = R⊕weak,< 1

2
(f) + Θ(1) (Theorem 3.3.12) and log γ∞2 (F ) = Rcc

weak,< 1
2
(F ) + Θ(1)

(Theorem 3.2.27) to get the following lifting theorem.

Theorem 3.5.8. Let f : {0, 1}n → {0, 1}. Then R⊕weak,< 1
2
(f) = Rcc

weak,< 1
2
(f ◦ XOR) + Θ(1).

3.6 Quantum Communication is Upper Bounded by γ∞2F

We provide new upper bounds on quantum communication complexity, along similar lines
to the square root of approximate rank upper bound given by Gál and Syed [GS19]. Let
Qcc

pri,1/3(F ) denote the quantum communication complexity of F when the parties do not share
entangled qubits before the protocol starts. Let Qcc

ent,1/3 denote the quantum communication
complexity when they do share entanglement. Gál and Syed showed that Qcc

pri,1/3(F ) ≤
O(α2√rankα(F ) log(rankα(F )) for all α > 1. 9 Their algorithm was inspired by looking at γα2 ,
and by the fact that it is at most α

√
rankα(F )).

We can use the Johnson-Lindenstrauss Theorem along with a phased amplitude amplifica-
tion algorithm to extend this to Õ(γ∞2 (F )) for quantum communication with entanglement,
with an extra factor of logn for quantum communication without entanglement. There is an
upper bound of O(γ∞2 (F )2) on the randomized communication complexity by just repeatedly
running a small advantage protocol and amplifying the advantage by taking the majority. One
would imagine that the quantum protocol can use amplitude amplification to achieve the same
goal without the quadratic loss. That is almost true, but there is a problem in using amplitude
amplification. This is remedied by using a method similar to quantum fingerprinting as done
by Gál and Syed [GL14]. We first go over what amplitude amplification and the variant of
quantum fingerprinting are, and then move on to our proofs.

Theorem 3.6.1 (Amplitude amplification [BHMT02]). Let p ∈ (0, 1
2 ]. Let A be a quantum

algorithm operating on a 1-qubit register ans and another register R, that transforms the state
9Recall that similar to the definition of γα2 , rankα(F ) is the minimum rank among matrices M that sign-agree

with the sign matrix of F and have values in [−α,−1] ∪ [1, α]. It is essentially rankε(F ), where ε is around
1
2 −

1
2α .
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|0〉ans|0〉R to the state |ψ〉 = cos(θ)|0〉ans|v0〉R + sin(θ)|1〉ans|v1〉R, with v0 and v1 being unit
vectors and with the promise that cos2(θ) ∈ [0, 1

2 − p] ∪ [1
2 + p, 1]. Then there is a quantum

algorithm using O(1/p) applications of A and A−1 that decides with probability at least 2/3
whether cos2(θ) ∈ [0, 1

2 − p] or cos2(θ) ∈ [1
2 + p, 1].

Proof. Before we begin, let us analyze the condition on θ in the theorem statement. We
can assume that cos(θ) and sin(θ) are both positive (negative signs can be pushed into
v0 and v1). This restricts θ to be in [0, π/2]. Since the maximum slope of cos2(θ) is 1,
cos2(θ) ∈ [0, 1

2 − p] implies that θ ∈ [π/4 + p, π/2] and cos2(θ) ∈ [1
2 + p, 1] implies that

θ ∈ [0, π/4− p].
Let Sans be the unitary operation that maps a basis vector of the form |0〉ans|i〉R to
itself and maps a basis vector of the form |1〉ans|i〉R to −|1〉ans|i〉R. Let S0 be the
unitary operation that maps the basis vector |0〉ans|0〉R to −|0〉ans|0〉R and maps any
other basis vector to itself.

|0〉|v0〉

|1〉|v1〉

|ψ〉 = cos(θ)|0〉|v0〉+ sin(θ)|1〉|v1〉

|φ〉 = cos(α)|0〉|v0〉+ sin(α)|1〉|v1〉

Sans|φ〉

−AS0A−1Sans|φ〉

θ + α

Figure 3.1: One step of amplitude amplification. The dotted lines illustrate how negating
the component orthogonal to |ψ〉 is equivalent to reflecting about |ψ〉.

For any vector of the form sin(α)|1〉|v1〉+ cos(α)|0〉|v0〉, we look at what the operation
−AS0A−1Sans does (see Figure 3.1 for a visual guide). Sans flips the signs of the
components with B = |1〉, resulting in the vector − sin(α)|1〉|v1〉 + cos(α)|0〉|v0〉 =
sin(−α)|1〉|v1〉+cos(−α)|0〉|v0〉. The operation −AS0A−1 is best understood by looking
at its action on |ψ〉 and its action on states orthogonal to |ψ〉. In the former case,
|ψ〉 is mapped to |0〉|0〉 by A−1, its sign is flipped by S0 and then it is mapped back
to |ψ〉 by −A. For a state orthogonal to |ψ〉, A−1 maps it to a state orthogonal to
|0〉ans|0〉R. S0 does nothing to it, and −A maps it back to what it originally was
but with its sign flipped. Hence this amounts to a reflection around |ψ〉, and our
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state sin(−α)|1〉|v1〉+ cos(−α)|0〉|v0〉 becomes sin(θ + (θ− (−α)))|1〉|v1〉+ cos(θ + (θ−
(−α)))|0〉|v0〉 = sin(2θ + α)|1〉|v1〉+ cos(2θ + α)|0〉|v0〉.
This amplification of the magnitude of the component of ψ along the state |0〉ans is what
is referred to as amplitude amplification. Its benefits are immediate. If cos2(θ) was equal
to 1

2 + ε for a small ε (i.e. θ ≈ π/4 + ε), then with π/4ε applications of −AS0A−1Sans,
the magnitude of the component along |0〉ans becomes close to 1. Classically we would
have to run an ε advantage protocol O(1/ε2) times to be sure whether the deviation
from half was positive or negative.
However, this operation is not monotone. If you apply −AS0A−1Sans π/4ε times, and
cos2(θ) happened to be much bigger than 1

2 + ε, then the magnitude of the component
along |0〉ans could be anywhere between 0 and 1. So the algorithm goes in phases, each
phase checking for a different range of ε, as illustrated in Figure 3.2.

|0〉|v0〉

|1〉|v1〉

Region 0

Region 1

Region 2

Figure 3.2: All states in region 0 are far enough from π/4 for a few measurements to be
sufficient for differentiating between “larger than π/4” and “smaller than π/4”. In phase
1, any |ψ〉 in region 1 gets mapped to a state in region 0. It is then measured, and
this process is repeated a few times to bring down the probability of error. Similarly
in phase i, any state that was originally in region i is mapped to a state in region 0.
Within O(1/p) regions, all states that satisfy Theorem 3.6.1’s promise are covered.

We can now describe the quantum algorithm. Let imax be dlog5(π/12p)e. Let ampi = 5i−1
2

and repi = 100(imax + 1− i). Execute the following for i = 0, 1, . . . , imax.

• Repeat the following experiment repi times.

– Starting with |0〉ans|0〉R, apply the unitary A.

– Apply the unitary −AS0A−1SG ampi times.



3.6. QUANTUM COMMUNICATION IS UPPER BOUNDED BY γ∞2 75

– Measure register ans.

• If the number of times the measurement returned 1 is greater than .6repi, then
output θ ≥ π/4 + p.

• If the number of times the measurement returned 1 is less than .4repi then output
θ ≤ π/4− p.

• Else move on to the next value of i.

Note that when i = 0, we are just constructing |ψ〉 and measuring ans. If θ > π/3 the
probability of measuring a 1 is ≥ 3/4. Using Hoeffding’s Inequality (Lemma 3.1.1), we
see that the probability of measuring 1 less than .6rep0 times is < e−2(3/4−.6)2rep0 ≤
(1/4)imax+1. Similarly, for θ < π/6 the probability of not outputting θ < π/4 − p is
≤ (1/4)imax+1.
When θ 6∈ [0, π/6] ∪ [π/3, π/2], we want to ensure that a θ which is greater than π/4
does not output θ < π/4− p. Here the probability of measuring 1 is at least 1

2 and so
the probability of getting a 1 less than .4rep0 times is < e−2(.5−.4)2rep0 ≤ (1/4)imax+1.
Similarly a θ which is less than π/4 will output θ > π/4 − p with probability ≤
(1/4)imax+1.
In phase i, θ gets transformed to θ+ 5i−1

2 ·2θ = 5iθ before measurement. In particular the
interval [π/4+ π

5i·12 , π/4+ π
5i−1·12 ] gets transformed to the interval [5iπ/4+ π

12 , 5iπ/4+ 5π
12 ],

which is congruent to [π/4 + π/12, π/4 + 5π/12] = [π/3, 2π/3] modulo π. Similarly
the interval [π/4 − π

5i−1·12 , π/4 −
π

5i·12 ] gets transformed to the interval [−π/6, π/6].
Measurements taken now will have the same guarantees as measurements made in phase
0.
However, repi changes with i, so the probabilities of failure in phase i become at most
(1/4)imax−i+1 instead of the (1/4)imax+1 that we got in phase 0.
Note that every θ in the range [0, π/4−p]∪[π/4+p, π/2] is mapped to a θ ∈ [−π/6, π/6]∪
[π/3, 2π/3] in some phase. Let us refer to this phase as iθ.
The probability that a θ outputs wrongly before phase iθ is at most ∑iθ−1

i=0 (1/4)imax−i+1.
The probability that it does not output the correct answer in phase iθ is at most
(1/4)imax−iθ+1. A union bound over all the errors gives a total error probability of at
most 1/4 + 1/42 + · · · < 1/3.
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The number of times A or its inverse are used is at most

imax∑
i=0

(1 + 2ampi)repi =
imax∑
i=0

5i · 100(imax + 1− i)

≤ 100
imax∑
j=0

5imax−j · (j + 1)

= O(5imax) = O(1/p).

The last line above follows from the line before it by noting that each successive term
in the summation is at most 2/5 times the previous term.

Gal et al. [GS19] uses the following theorem that uses a technique similar to quantum
fingerprinting [BCWdW01] that we’ll refer to as quantum vector-embedding.

Theorem 3.6.2. There is a quantum protocol without entanglement of cost log rankα(F ) that
has advantage Ω(1/α

√
rankα(F )).

Proof. Given a unit vector v ∈ Rd, the quantum computational model allows us to
represent it in a dlog de-qubit register R as |ψ〉R = ∑

i∈[d] vi|i〉. This representation
doesn’t allow us to recover v but it is useful for estimating the dot product of vectors.
Suppose that Alice has v1 and Bob has v2. Here is how they would estimate 〈v1, v2〉.
Alice initializes a 1-qubit register B in the state |0〉B, and a dlog de qubit register V in
the state |0〉V .

• Alice applies the Hadamard transform on B.

• Controlled on B = |0〉, Alice transforms |0〉V to |φx〉V where |φx〉 = ∑
i∈[d] v1[i]|i〉.

This means that

|0〉B|0〉V 7→ |0〉B|φx〉V , ∀i |1〉B|i〉V 7→ |1〉B|i〉V .

Which unitary she uses to do the transformation on V is irrelevant.

• Alice sends across B and V to Bob.

• Controlled on B = |1〉, Bob transforms |0〉V to |φy〉V where |φy〉 = ∑
i∈[d] v2[i]|i〉.

This means that

|1〉B|0〉V 7→ |1〉B|φy〉V , ∀i |0〉B|i〉V 7→ |0〉B|i〉V .

Which unitary he uses to do the transformation on V is irrelevant.

• Bob sends back B and V to Alice.
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• Alice applies the Hadamard transform on B.

On the state |0〉B|0〉V , the above protocol produces the state 1
2(|0〉B|φx + φy〉V +

|1〉B|φx − φy〉V ). The probability of measuring a 1 in register B in this state is
1
4〈φx − φy | φx − φy〉 = 1

4(2− 2〈φx | φy〉) = 1
2 −

1
2〈v1, v2〉.

Let r = rankα(F ). Let M be the matrix guaranteed by the definition of rankα that
sign-agrees with the sign matrix of F , has entries in [−α,−1] ∪ [1, α] and has rank r.
We know (see Observation 3.2.12) that M/α

• is pointwise-close to the sign matrix of F , taking values in [−1,−1/α] ∪ [1/α, 1].

• has a decomposition XY , where each row of X and column of Y is of dimension
r and has length at most 4

√
r.

We can add two extra dimensions to X and Y so that XY is still M/α but the length
of every row of X and column of Y is exactly 4

√
r. Alice and Bob scale X and Y by

1/ 4
√
r and use the above protocol on X[x, ∗] and Y [∗, y] to estimate M [x, y]. This gives

them a quantum circuit that involves O(log r) communication and on input (x, y) yields
a state cos(θ)|0〉|v0〉 + sin(θ)|1〉|v1〉, where cos2(θ) belongs to [1

2 + 1
2α
√
r
, 1

2 + 1
2
√
r
] or

[1
2 −

1
2
√
r
, 1

2 −
1

2α
√
r
] depending on the value of F (x, y).

Given a protocol with such advantage, Alice and Bob would use amplitude amplification
(see Theorem 3.6.1) to figure out whether F (x, y) was 0 or 1. This involves them implementing
the operations S0,Sans,A and A−1. Note that all the qubits are held by Alice at the end
of the above protocol. Hence she can easily implement S0 and Sans. The operation A is
the above protocol itself. The operation A−1 is the above protocol again, but in reverse
where every unitary is replaced with its inverse. This is due to the simple observation that
(U1U2)−1 = U−1

2 U−1
1 .

The final protocol would involve O(α
√

rankα(F )) applications of the quantum vector-
embedding protocol, and so the total cost of the protocol is at mostO(α

√
rankα(F ) log rankα(F )).

We exhibit the following upper bounds.

Theorem 3.6.3. For any function F : {0, 1}n × {0, 1}n → {0, 1},

1. Qcc
ent,1/3(F ) ≤ O(γ∞2 (F ) log γ∞2 (F )), witnessed by a protocol using entanglement solely as

public randomness, and

2. Qcc
pri,1/3(F ) ≤ O(γ∞2 (F ) log γ∞2 (F ) + logn).

Proof. Let r = γ∞2 (F ). By the definition of γ∞2 , we have a matrix M sign-agreeing with
the sign matrix of F with values in the range (−∞,−1] ∪ [1,∞) such that M = XY ,



78 CHAPTER 3. COMPLEXITY MEASURES AND LOWER BOUNDS

where each row of X and column of Y have norm at most
√
r. As done in the proof of

Theorem 3.6.2, we can make the norms exactly
√
r. This also means that any entry of

M has absolute value at most r. Hence γ∞2 (F ) = γr2(F ).
Alice and Bob can try touse the decomposition XY to compute the function, but the
dimensions of the rows of X and columns of Y can be as large as the approximate rank.
In order to get shorter vectors, they can use Theorem 3.4.4 (the Johnson-Lindenstrauss-
like theorem). This would result in a decomposition X ′Y ′ where each row of X ′ and
column of Y ′ are of dimension O(r2n), each row and column having norm at most
√
r (see Equation (3.1)), and the inner product of any row and any column lying

in [−1,−1/2r] ∪ [1/2r, 1] (by setting ε = 1 − 1/r and δ = 1 − 1/2r). Note that the
multiplicative factor of n only appears because we are using a union bound over ≈ 22n

entries.
Since they only care about preserving the norms of φx, ψy and φx + ψy instead of all
the ≈ 22n vectors, they can bring the dimension down to O(r2). (Recall from the
proof of Theorem 3.4.4 that the vectors φx and ψy are obtained by scaling X and Y

respectively, and have norms at most 1.) Their protocol would begin as follows.

• Use public randomness to sample the appropriate dimensional random vectors
v(1), . . . ,v(t) for t = O( r

2(1−ε)2

(δ−ε)2 ) = O(r2).

• Alice creates the vector vx = (〈v(1), φx〉, . . . , 〈v(t), φx〉).

• Bob creates the vector vy = (〈v(1), ψy〉, . . . , 〈v(t), ψy〉).

We can analyze these vectors as done in the analysis of Theorem 3.4.4. We can set
the constant hidden in t = O(r2) so that with probability at least 0.99, 〈vx, vy〉 ∈
〈φx, ψy〉 ± (δ − ε), ‖vx‖2 ∈ ‖φx‖2 ± (δ − ε) and ‖vy‖2 ∈ ‖ψy‖2 ± (δ − ε). Hence it is
extremely likely that 〈vx, vy〉 ∈ [−1,−1/2r] if F (x, y) were −1 and in the range [1/2r, 1]
if F (x, y) were 1. Alice and Bob add extra coordinates so that the norm of vx and vy

are 2 without chnaging 〈vx, vy〉.
We can now proceed with vector-embedding as done in the proof of Theorem 3.6.2,
yielding a protocol of cost O(log r) (because of the dimension of the vectors vx, vy being
poly(r)), and with advantage Ω(1/r) (because the vectors have constant norm and the
magnitude of the inner product of the vectors is Ω(1/r)). We can now use amplitude
amplification to conclude part 1 of the theorem.
For part 2 of the theorem, we simply use Newman’s Theorem (Theorem 3.4.3) on part
1.
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Rcc
pri,ε(F )

Rcc
ε (F )

log partε(F )

log srect1
ε (F ) log srect0

ε (F )

log corr1
ε (F ) log corr0

ε (F )

log rank+
ε (F ) log rank+

ε (F )

log rankε(F )

log γα2 (F )

log γ∞2 (F )Rcc
weak,< 1

2
(F ) ±θ(1)==

♦+ logn

♦/2

D⊕(f)

Dcc(F )

log(Rect1(F ) + Rect0(F ))

log rank+(F )

log rank(F )

log γ2(F )

log spar(f) =
♦/2

log sparε(f)

= log ‖f̂‖α1

log ‖f̂‖∞1R⊕weak,< 1
2
(f) ±θ(1)==

=

O(♦6)

O(♦2)

Figure 3.3: Relations between various measures of Boolean functions f and F . When a measure
of f is compared with a measure of F , it is implicit that F := f ◦ XOR (see Section 3.5).
A −→ B indicates A ≤ B.
A

g(♦)−→ B indicates that not only is A ≤ B, but A ≤ g(B).
A

g(♦)
99K B indicates that although it may not be the case that A ≤ B, it is still true that

A ≤ g(B).
A dotted arrow is a special case of the above arrow and it indicates A ≤ 2B + logn+ O(1)
(unless stated otherwise). It also hides differences in the error parameters of A and B. All the
dotted relations follow the framework described in Section 3.4.
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Chapter 4

Refuting the
Log-Approximate-Rank Conjecture

This work was done in collaboration with Arkadev Chattopadhyay and Nikhil S. Mande.
It has appeared at STOC ‘19 and was published in JACM. [CMS20]

In this chapter, we show that the logarithms of the approximate rank, approximate
nonnegative rank, spectral norm (or γ2 norm) are not well suited to characterize randomized
parity decision tree complexity or randomized communication complexity. We also show that
the parity kill number of a function with small spectral norm can be large. All these separations
are witnessed by the function SINK or its lift SINK ◦ XOR. Figure 4.1 shows various measures
for SINK ◦ XOR. Figure 4.2 shows most of the conjectures refuted by SINK or SINK ◦ XOR.
The intuition behind all this is the observation that rank and norms are subadditive, and their
logarithms hence grow very slowly with respect to addition. On the other hand, we have no
reason to believe that randomized communication complexity grows as slowly. This motivates
us to look at the following class of functions designed to have small spectral norm as a result
of being the summation of functions of small spectral norm.

ComplexityO(logn) Ω(
√
n)

log
∥∥∥F̂∥∥∥

1

log rank1/3(MF)
log rank+

1/3(MF)

R1/3(F)
log rank+

1/80(MF)
Corr(F)

Figure 4.1: Various complexity measures of our function F := SINK ◦ XOR on 2n bits. Prior
to this work, no exponential separation between any pair of these measures was known for a
total function.
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Log-Approximate-
Rank Conjec-
ture [LS09b]

Grolmusz’s Con-
jecture [Gro97]

Log-Rank Con-
jecture [LS88]

Strong Log-
Approximate-

Nonnegative-Rank
Conjecture [KMSY14]

Log-Rank Conjecture
for XOR Functions

Log-Approximate-
Nonnegative-Rank

Conjecture [KMSY14]

Protocol Compression
to Information Cost

Quantum-Log-Rank
Conjecture [LS09b]

Parity Kill Number
Conjecture [TWXZ13]

Lemma 3.2.29 [GL14]

[KMSY14][TWXZ13]

Figure 4.2: Implications between various interesting conjectures. We use the SINK function
to disprove the shaded conjectures. The Quantum-Log-Rank Conjecture was subsequently
falsified [ABT19, SdW19] using SINK, and the rest remain unresolved.

4.1 The Disjoint Subcube Functions

A subcube is a subset of the Boolean hypercube with the following structure.

Definition 4.1.1 (Subcube). A set T ⊆ {0, 1}n is said to be a subcube if there exist coordinates
i1, . . . , ik ∈ [n] and a1, . . . , ak ∈ {0, 1} such that T = {x ∈ {0, 1}n|xi1 = a1, xi2 = a2, . . . , xik =
ak}. We call fixed(T ) := {i1, . . . , ik} the set of fixed coordinates in T .

We can see that the spectral norm (Definition 3.3.5) of any subcube is at most 1.

Claim 4.1.2. Let S be any subcube in {0, 1}k. Then
∥∥∥(̂DSS)

∥∥∥
1

= 1.

Proof. It is easy to see that the following polynomial evaluates to 1 on all x ∈ S, and 0
otherwise. (Recall from Definition 3.1.3 that χ{j}(x) = (−1)xj .)

pS(x) =
∏

j∈fixed(S)

(
1 + (−1)bjχ{j}(x)

2

)
,

where S fixes xj to bj . Expanding the above gives a sum of 2|fixed(S)| monomials, each with a
coefficient of absolute value 2−|fixed(S)|. Thus the spectral norm of pS is 1.

Now we define our class of Disjoint Subcube functions.

Definition 4.1.3 (DSS). Consider a set S = {S1, S2, . . . , Sm} of m disjoint subcubes in
{0, 1}k. Define

DSS(x) :=

1 if x ∈
⋃
i∈[m] Si

0 otherwise.
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Claim 4.1.4. Let S = {S1, . . . , Sm} be any set of m disjoint subcubes in {0, 1}k. Then,∥∥∥(̂DSS)
∥∥∥

1
≤ m.

Proof. Since the subcubes are disjoint, the exact polynomial representation for DSS is

pDSS =
∑
Si∈S

pSi ,

where pSi is the polynomial that evaluates to 1 for all x ∈ Si and 0 otherwise. Since the
spectral norm of each pSi is 1 the spectral norm of DSS is at most m.

4.1.1 The Sink Function

We now define the function SINK that will be crucial for this chapter. The definition involves
the concept of a tournament. A tournament on n vertices is a directed graph which is obtained
by assigning directions to each edge in the undirected complete graph Kn.

Definition 4.1.5 (SINK). Consider a tournament on m vertices defined by the
(m

2
)

variables
xi,j for i < j ∈ [m] in the following way: xi,j = 1 =⇒ vi → vj is the direction of the (vi, vj)
edge, and xi,j = 0 =⇒ vi ← vj is the direction. The function SINK computes whether or not
there is a sink in the graph. In other words,

SINK(x) = 1 ⇐⇒ ∃ i ∈ [m] such that all edges adjacent to vi are incoming.

The following picture shows a 0-input of SINK.

v1

v2

v3 v4

v5

z1,
2
= 0

z 1
,3

=
0 z

1
,4 =

1

z1,5 = 0

z
2
,3 =

0

z2,4 = 1

z2,5 = 1

z3,4 = 1

z3,
5
= 1

z 4
,5

=
1
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We now note that SINK is a specific instance of DS.

Lemma 4.1.6. Consider the function SINK on
(m

2
)

variables. There exists a set of disjoint
subcubes S = {S1, . . . , Sm} in {0, 1}(

m
2 ) such that SINK = DSS .

Proof. Label each of the
(m

2
)

coordinates by a unique (i, j) pair for i < j ∈ [m]. The description
of fixed(Si) is given below.

• xi,j = 0 for all j > i.

• xj,i = 1 for all j < i.

For each i < j, Si ∩ Sj = ∅ since xi,j = 0 in Si and xi,j = 1 in Sj . Thus, the subcubes
S1, . . . , Sm are disjoint. Note that the function DSS is exactly the same as SINK, with x ∈ Si
if and only if vi is a sink when the edges are oriented according to x.

Unless mentioned otherwise, we consider the SINK function to be on
(m

2
)

variables.

Projections

While analyzing the complexity of SINK, we will often use projections of the inputs. Let
X ∈ {0, 1}(

m
2 ). To see how X orients the edges incident to a vertex vi, let Evi be the set of

m − 1 input coordinates that correspond to the edges incident to vi. We use the notation
Xvi ∈ {0, 1}m−1 to denote the input projected to the coordinates in Evi . Note that Xvi decides
whether or not vi is a sink. By zi, we refer to the (m− 1)-bit string such that vi is a sink if
and only if Xvi = zi.

4.2 Simplicity of SINK

Building on the fact that SINK is an instance of a Disjoint Subcube function, we note the
following ways in which SINK is a ‘simple’ function.

Theorem 4.2.1 (Simplicity of SINK).

1. γ2(SINK ◦ XOR) =
∥∥∥ŜINK

∥∥∥
1
≤ m.

2. rank1/3(SINK ◦ XOR) ≤ spar1/3(SINK) = O(m4).

3. rank+
1/3(SINK ◦ XOR) = O(m5).

Proof. Proof of Part 1: Theorem 3.5.2 states that γ2(f ◦ XOR) =
∥∥∥f̂∥∥∥

1
. Since SINK is an

instance of DSS where |S| = m (Lemma 4.1.6) and
∥∥∥D̂SS

∥∥∥
1
≤ |S| (Claim 4.1.4), we know

that
∥∥∥ŜINK

∥∥∥
1
≤ m. Note that composing with XOR does not change the spectral norm: If

pSINK(x) is the polynomial computing SINK, then pSINK◦XOR(x, y) is obtained by replacing
every monomial χS(x) in pSINK(x) with χS(x)χS(y) = χS(x⊕ y).
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Proof of Part 2: Recall that Part 1 implies that
∥∥∥ŜINK

∥∥∥
1
≤ m. Theorem 3.4.2 implies the

existence of a function f : {0, 1}(
m
2 ) → R with sparsity O(m4) such that |SINK(x)−f(x)| ≤ 1/3

for all x. From Theorem 3.5.3, f ◦XOR has rank O(m4) and |SINK◦XOR(x, y)−f ◦XOR(x, y)| ≤
1/3 for all x, y.

Proof of Part 3: We show that the communication matrix of SINK ◦ XOR is pointwise
close to a matrix M which can be written as the nonnegative sum of at most O(m5) nonnegative
rank-1 matrices.

Note that SINK◦XOR(X,Y ) can be written as an OR of ‘Equalities’: ∨mi=1 (Xvi = Yvi ⊕ zi).
Since at most one of these Equalities can fire for any input, it is in fact the sum of the m
Equalities. It is well known that any Equality where each party gets m−1 bits can be solved to
within error 1/6m with a public coin randomized communication protocol of cost logm+O(1).

Alice and Bob use the public randomness to sample sets S1, S2, St ⊆ [m− 1] uniformly at random. Alice
then sends Bob the t-bits string {⊕Sjx}j∈[t] to Bob, who responds with the output 1 if it is the same as
{⊕Sjy}j∈[t] and the output 0 otherwise. If the strings are equal, then the output is 1 with probability 1.
If they are different, let i be such that xi 6= yi. For every S ⊆ [m − 1] \ {i}, ⊕Sx = ⊕Sy if and only if
⊕S∪{i}x 6= ⊕S∪{i}y. Hence the probability that ⊕Sjx = ⊕Sjy is half and the probability that the output
is 1 is 1/2t. The total communication is t+ 2 bits.

Newman’s Theorem (Theorem 3.4.3) states that this can be converted to a private coin
protocol, introducing an additional error of at most δ, with an additional communication
cost of logm + 2 log(1/δ) + O(1). Setting δ = 1/6m, we get a 4 logm + O(1) cost private
coin protocol with error 1/3m. Lower bound 6 states that Rpriε (F ) ≥ log rank+

ε (MF ). So the
matrix for any of the Equalities has (1/3m)-approximate nonnegative rank at most O(m4).
By adding up these m approximating matrices, we get a matrix of nonnegative rank O(m5)
that pointwise 1/3-approximates MSINK◦XOR.

4.3 SINK is hard: Parity Kill Number and RPDT Complexity

4.3.1 Affine Subspaces: Notation and Facts

We will identify {0, 1}n with the vector space Fn2 , where 0 and 1 are identified with the additive
identity and multiplicative identity of F2, respectively. We can now talk of linear forms
` ∈ {0, 1}n that map an x ∈ {0, 1}n to 〈`, x〉 := ∑

i∈[n] cixi ∈ {0, 1}, where ` = (c1, c2, . . . , cn).
We can also take the sums of linear forms to get other linear forms in their span. A linear
equation 〈`, x〉 = a will sometimes be represented as (`, a) ∈ {0, 1}n+1 in order to avoid
confusion. Note that a set of linear equations logically implies every equation in its span.

Definition 4.3.1 (Affine subspace). A set T ⊆ {0, 1}n is said to be an affine subspace if
there exist independent linear forms `1, . . . , `k and a1, . . . , ak ∈ {0, 1} such that T = {x ∈
{0, 1}n|〈`i, x〉 = ai for all i ∈ [k]}. k is called the co-dimension of T , denoted co-dim(T ). It
can be seen that |T | = 2n−k.
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Claim 4.3.2. Let W be an affine subspace of {0, 1}n defined by a system of equations with
span L. Let S ⊆ [n]. Let LS ⊆ L be the subset of equations that are supported completely by
variables indexed within S. For any y ∈ {0, 1}S, the number of extensions of y in W is 0 if y
violates a constraint in LS and 2dim(W )−(|S|−dim(LS)) otherwise.

Proof. Let BS be a basis for LS . Extend BS to get a basis B for L.

• Let TS ⊆ {0, 1}S be the affine subspace where the equations LS are satisfied. If
y ∈ {0, 1}S is not in TS , then y must contradict one of the equations in LS . Since this is
also an equation satisfied in W , no extension of y is in W .

• Consider the set Sy ⊆W defined as those elements of W which also satisfy the equations
{〈ei, x〉 = yi}i∈S . Sy is exactly the set of extensions of y within W . Sy already satisfies
the equations in LS . Hence Sy is adding only |S| − dim(LS) more equations to W . If we
show that these new equations are independent of B, or equivalently that {〈ei, x〉 = yi}i∈S
is independent of B \BS , we can conclude that |Sy| = 2dim(W )−(|S|−dim(LS)).

Suppose (B\BS)∪{〈ei, x〉 = yi}i∈S has a dependency. Then there must be a B′ ⊆ B\BS
and an S′ ⊆ S such that the equation ∑(`,a)∈B′(`, a) = ∑

i∈S′(ei, yi). Hence B \ BS
generates an element of LS (since it cannot generate anything outside of L), contradicting
the fact that B is a basis, and finishing the proof.

We will also make use of the following corollary.

Corollary 4.3.3. Let A and B be affine subspaces of {0, 1}n. If |A∩B||B| < |A|
2n , then A∩B = ∅.

Proof. The affine subspace A sets n− dim(A) independent linear forms. We can take a linear
transformation of {0, 1}n such that A now sets the first n− dim(A) coordinates. Note that
since the linear transformation is a bijection, the quantity |A ∩ B| does not change. The
quantity |A ∩B| counts the number of extensions of the n− dim(A)-bit string set by A that
lie in B. The above claim implies that |A ∩B| is either 0 or 2dim(B)−(n−dim(A)−c) where c ≥ 0
corresponds to dim(LS) in the statement of the claim. So |A ∩B| is either 0 or at least |B|·|A|2n ,
as the corollary claims.

4.3.2 Large Parity Kill Number

The fraction of 1-inputs that SINK has grows exponentially small with m: For any vertex v,
exactly 1/2m−1 fraction of inputs have v as a sink. Since these are disjoint events, the fraction
of 1s is m/2m−1. Despite the abundance of 0-inputs, we will show that it is hard to find a
large affine subspace that is monochromatically 0. We will in fact show a stronger statement.

Lemma 4.3.4 (Sink Avoidance is Costly). Fix any k ≤ m. Let W be an affine subspace such
that the vertices v1, v2, . . . , vk are not sinks in any input in W . Then co-dim(W ) ≥ 2k/3.
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Proof. Let W be an affine subspace of {0, 1}(
m
2 ), defined by a system of linear equations with

span L, such that for every input in W , none of V = {v1, . . . , vk} is a sink. Recall that zi
is defined as the m − 1-bit string such that vi is a sink if and only if x restricted to Evi is
equal to zi. So we have that for every 1 ≤ i ≤ k, no extension of zi appears in W . Then, by
Claim 4.3.2, we know that for every 1 ≤ i ≤ k, there exists at least one linear equation in L of
the form 〈`i, x〉 = ai, where `i is supported completely by the variables indexed within Evi ,
and ai is such that 〈`i, zi〉 6= ai. Let us call such a linear constraint a vi-constraint.

Since xi,j is the only variable in Evi∩Evj , we have xi,j = 0 and xi,j = 1 as the only candidates
for equations that are simultaneously vi-constraints and vj-constraints. But, assuming that
i < j, the equation xi,j = 0 represents a vj → vi edge and is hence a vj-constraint and not a
vi-constraint. Similarly xi,j = 1 is not a vj-constraint. Hence no constraint can simultaneously
be a vi-constraint and a vj-constraint. Furthermore, L cannot have both the constraints
xi,j = 0 and xi,j = 1, since that would make W empty (and not an affine subspace) since no x
can satisfy them both.

Let {〈`v, x〉 = av}v∈{v1,...,vk} be a list of vi-constraints in L, one for each i ∈ [k]. From the
above set, we define L = {`v}v∈{v1,...,vk}. Note that L has k distinct elements. In what follows,
each linear form will be seen as an element of Fn2 . We argue that the dimension of span(L) is
at least 2k/3, to conclude that W has co-dimension at least 2k/3.

Let B ⊆ L be a basis of span(L), |B| = b. Let LB denote L\B. We make the two following
simple claims which together easily imply our lemma.

Claim 4.3.5. Let `r ∈ LB, such that `r = `1 + · · ·+ `s, where `i ∈ B for each i ∈ [s]. Then,
the set B \ {`1, . . . , `s} spans every element in LB \ {`r}.

Claim 4.3.6. Let `r ∈ LB and B0 ⊆ B, such that `r ∈ span(B0). Then, |B0| ≥ 2.

Before proving the above two claims, let us use them to establish our lemma. Pick any
` ∈ LB. Then, find the minimal B0 ⊆ B such that ` ∈ span(B0). By Claim 4.3.6, |B0| ≥ 2.
Now, shrink B and LB by deleting B0 and ` from them, respectively. Then, by Claim 4.3.5,
the shrunk B still spans the new LB. Hence, we can repeat the above step to shrink LB this
way at least k − b times before it becomes empty. At each step B shrinks in size by at least 2.
Thus, b ≥ 2(k − b), yielding b ≥ d2k/3e.

All that is left is to establish the two claims. Let us begin by proving Claim 4.3.5. First,
consider the vertices v1, . . . , vs, vr, where `i is the linear form of the vi-constraint. By our
assumption, `1 + · · ·+ `s + `r = 0. The variable xi,j can be supported only by the constraints
`i and `j . It cannot be supported in only one of them, since then it will appear in the sum
which should be 0. So if xi,j is supported by `i and `i appears in the sum, then `j must also
appear in the sum and it must also support xi,j . Hence, consider the undirected graph Gr

with vertex-set {v1, . . . , vs} ∪ {vr}, where edge (vi, vj) is present iff xi,j is supported by `i

(and hence by `j). We show, using the fact that B is a basis, that Gr is connected. Take
any connected component G′ of Gr. Consider ∑i:vi∈G′ `i. For every edge (vi, vj) in G′, the
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variable xi,j is added twice and so the sum will be 0. If there is more than one connected
component, one of the components will not include vr and will be contained in {v1, . . . , vs}.
This will contradict the fact that B is a basis. So there is only one connected component,
{v1, . . . , vs} ∪ {vr}. This also means that in any non-trivial linear sum of linear forms in L

that is identically zero, `i participates for any i ∈ {1, . . . , s} ∪ {r} iff each of `1, . . . , `s and `r

participate (since every connected component that includes vi must include all the others).
Now take any ` ∈ LB \ {`r}. Because B is a basis, there is a linear sum of elements just
from B that equals `. If any element from {`1, . . . , `s} participates in this, then by the above
argument `r will also participate, yielding a contradiction as `r /∈ B.

Finally, we prove Claim 4.3.6. For the sake of contradiction, let B0 = {`j}. Then, `r = `j .
But we know that the elements of L are distinct, so this is not possible.

We now observe that the lower bound on the co-dimension obtained in Lemma 4.3.4 is
tight.

Claim 4.3.7. Let m ≥ 3. Fix any k ≤ m. There is an affine subspace W of co-dimension
d2k/3e such that the vertices V = {v1, v2, . . . , vk} are not sinks in any input in W .

Proof. Let k′ be the largest multiple of 3 less than or equal to k. For vertex vk′+1, should it
exist, we set x(1,k′+1) so that the (v1, vk′+1) edge is directed out of vk′+1. We do the same for
vk′+2. Now we only need to ensure that none of v1, . . . , vk′ are sinks.

Group these k′ vertices into triples (v1, v2, v3), . . . , (vk′−2, vk′−1, vk′). Consider the space W
obtained as the solution space to the constraints defined below. For each triple (vi, vi+1, vi+2),
add the following two constraints to the constraint list of W .

• x(i,i+1) + x(i,i+2) is set so that exactly one of the two edges (vi, vi+1) and (vi, vi+2) is
directed out of vi.

• x(i,i+1) + x(i+1,i+2) is set so that exactly one of the two edges (vi, vi+1) and (vi+1, vi+2)
is directed out of vi+1.

The two constraints above are simultaneously satisfied if and only if vi, vi+1, vi+2 forms a cycle.
Hence the above constraints ensure that none of v1, . . . , vk′ are sinks. The total number of
constraints is 2bk/3c+ (k mod 3) = d2k/3e.

We now conclude that SINK has large parity kill number. We know that
∥∥∥ŜINK

∥∥∥
1
≤ logm.

By concluding that C⊕min(SINK) ≥ 2m/3, we refute Conjecture 3.3.9. This also shows that we
cannot hope to use PDT leaf complexity to get a generic upper bound on the number of affine
spaces needed to represent a function of small spectral norm, and that Shpilka, Tal and Volk’s
result [STV17] is nearly optimal in this regard.

Theorem 4.3.8.

1. ∀m > 2, C⊕min(SINK) = d2m/3e.
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2. Any deterministic PDT computing SINK has at least 22m/3 leaves.

Proof of Theorem 4.3.8. Proof of Part 1: Let W be an affine subspace of {0, 1}(
m
2 ) such

that every input in W has a sink. Since the number of such inputs is at most 2(m2 ) ·m/2m−1,
this means W must must have co-dimension at least m− 1− logm.

Now let W be an affine subspace of {0, 1}(
m
2 ) such that every input in W has no sink. By

Lemma 4.3.4 (set k = m), W must have co-dimension at least 2m/3.
By Claim 4.3.7, we see that there in fact is a monochromatic affine subspace of co-dimension

d2m/3e.
Proof of Part 2: Every leaf of the PDT is a monochromatic affine subspace of co-

dimension at most the depth of the leaf. From Part 1, we know that every leaf in a PDT
computing SINK has to be at depth at least 2m/3. Hence the number of leaves in any PDT
computing SINK is at least 22m/3.

4.3.3 Randomized Parity Decision Trees

For brevity’s sake in this section we will use f to refer to the function SINK on
(m

2
)

variables.
Given a randomized parity decision tree Π of cost c that computes f to within error ε,

and any distribution µ on {0, 1}k, there exists a deterministic parity decision tree Π′ of cost
at most c such that Prx∼µ[Π′(x) 6= f(x)] ≤ ε. This is because the error Π makes when the
input is sampled from µ is the expectation of the errors of its constituent deterministic parity
decision trees.

Let µ be the distribution defined as µ(x) = 1/2|f−1(0)| for x ∈ f−1(0) and µ(x) =
1/2|f−1(1)| for x ∈ f−1(1). µ places exactly half mass on 0-inputs and half mass on 1-inputs.

Lemma 4.3.9. Let ε ≤ 1/8 be any constant. Any deterministic parity decision tree Π of cost c
for f with error probability ε under the input distribution µ induces an affine subspace W such
that µ(W ∩ f−1(1)) ≤ 4εµ(W ) and co-dim(W ) ≤ c.

Proof. A deterministic parity decision tree gives a partition of the universe into at most 2c

labelled affine subspaces, each of co-dimension at most c, where we assume the label is 1 iff
the affine subspace has a larger mass over its 1-inputs than over its 0-inputs. This assumption
can only decrease the error. We note the following about the affine subspaces in the partition.

• Since the error probability of Π is ε, it cannot have 1-affine subspaces covering more
than 1

2 + ε mass under the distribution µ.

• Affine subspaces W which have error ≥ 4εµ(W ) can only make up 1/4 mass, to keep the
total error below ε.

Hence, if ε ≤ 1/8 is a constant, Π must induce a 0-affine subspace W such that µ(W ∩
f−1(1)) ≤ 4εµ(W ) and co-dim(W ) ≤ c.
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Lemma 4.3.10 (Smallness of Biased Affine Subspaces). Let ε ≤ 1/20. Any affine subspace W
that has µ(W ∩ f−1(1)) ≤ 4εµ(W ) satisfies

co-dim(W ) ≥ m/3.

Assuming the above lemmata it immediately follows that R⊕1/20(f) ≥ m/3. Since one can
repeat a protocol in order to decrease the error, R⊕1/20(f) = O(R⊕1/3(f)). Hence assuming
Lemma 4.3.10, we have the following theorem.

Theorem 4.3.11. R⊕1/3(SINK) ≥ Ω(m).

Since we know spar1/3(f) ≤ O(m4) and
∥∥∥f̂∥∥∥

1
≤ m, this shows exponential separations

between R⊕1/3(f) and log spar1/3(f) or log
∥∥∥f̂∥∥∥

1
. We now prove Lemma 4.3.10.

Smallness of Biased Affine Subspaces

We want to show that any 0-biased affine subspace under µ must have large co-dimension. We
do this in two steps.

• We show that any 0-biased affine subspace must have a very small fraction of 1 inputs.

• We then show that any affine subspace with a very small fraction of 1 inputs must have
large co-dimension.

We formally state these two steps below and then prove them.

Claim 4.3.12. Let ε ≤ 1/8. An affine subspace W such that µ(W ∩ f−1(1)) ≤ 4εµ(W ) must
satisfy

|W ∩ f−1(1)|
|W |

< 10ε |f
−1(1)|
2(m2 ) .

Claim 4.3.13. If an affine subspace W satisfies

|W ∩ f−1(1)|
|W |

<
1
2
|f−1(1)|

2(m2 ) ,

then co-dim(W ) ≥ m/3.

Proof of Claim 4.3.12. Since µ(W ) = µ(W ∩ f−1(1)) + µ(W ∩ f−1(0)),

µ(W ∩ f−1(1)) ≤ 4εµ(W )⇔ µ(W ∩ f−1(1)) ≤ 4ε
1− 4εµ(W ∩ f−1(0)).

Note that

µ(W ∩ f−1(1)) = 1
2
|W ∩ f−1(1)|
|f−1(1)| and

µ(W ∩ f−1(0)) = 1
2
|W ∩ f−1(0)|
|f−1(0)| ≤ 1

2
|W |
|f−1(0)| <

1.1
2
|W |
2(m2 ) .
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Therefore, |W ∩ f
−1(1)|

|f−1(1)| <
5ε

1− 4ε
|W |
2(m2 ) .

Cross-multiplying and using the assumption that ε ≤ 1/8,

|W ∩ f−1(1)|
|W |

< 10ε |f
−1(1)|
2(m2 ) .

Proof of Claim 4.3.13. Let S be the set of inputs that represent a graph with a sink, i.e. S =
f−1(1). Let Si ⊂ S be the set of inputs in which the graph represented has vertex vi as a sink.

Consider the set I of all i ∈ [m] such that

|W ∩ Si|
|W |

<
|Si|
2(m2 ) .

Then, by the condition assumed in the claim

1
2
|S|

2(m2 ) >
|W ∩ S|
|W |

=
m∑
i=1

|W ∩ Si|
|W |

≥
∑
i∈I

|W ∩ Si|
|W |

≥ |I| |S|/m
2(m2 ) = |I| 1

m

|S|
2(m2 ) ,

where the first equality follows from the disjointness of the Sis, and the second inequality
follows from the definition of I and the fact that |Si| = |S|/m. Hence |I| > m/2, and for all
i ∈ I,

|W ∩ Si|
|W |

<
|Si|
2(m2 ) = 2−(m−1).

Fix any i ∈ I. Define the distribution Wvi by the following sampling procedure: Sample
an input uniformly at random from W and project it to Evi . We have the following fact about
Wvi .

Pr
X∼Wvi

[X = zi] = |W ∩ Si|
|W |

< 2−(m−1).

But by Claim 4.3.2, the number of extensions of zi inside W is either 0 or at least
2dim(W )−(m−1). That is, PrX∼Wvi

[X = zi] is either 0 or at least 2−(m−1). Given our fact about
Wvi , it must be 0.

So for all i ∈ I, vi is never a sink in W . Since |I| ≥ m/2, Lemma 4.3.4 implies that the
co-dimension of W is at least m/3.

Proof of Lemma 4.3.10. By chaining together Claim 4.3.12 and Claim 4.3.13 we get that if
ε ≤ 1/20, then

µ(W ∩ f−1(1)) < 4εµ(W ) =⇒ co-dim(W ) ≥ m/3.
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4.4 SINK◦XOR is hard: Randomized Communication Complex-
ity

Before we begin proving the lower bound, we mention some statements regarding entropy which will be
used in our proofs.

Definition 4.4.1 (Entropy). Let X be a discrete random variable. The entropy H(X) is defined as

H(X) :=
∑

s∈supp(X)

Pr[X = s] log 1
Pr[X = s] .

Fact 4.4.2 (Folklore). |supp(X)| = k =⇒ H(X) ≤ log k, with equality if and only if X is uniform.

Definition 4.4.3 (Relative Entropy). Let ν, µ be distributions over a finite set S of outcomes. The relative
entropy (or Kullback-Liebler divergence) dKL(ν‖µ) is defined as

dKL(ν‖µ) :=
∑
s∈S

ν(s) log ν(s)
µ(s) .

Lemma 4.4.4 (Pinsker’s Inequality). For two distributions ν, µ over the same set of outcomes,

dKL(ν‖µ) ≥ 1
2 ln 2‖ν − µ‖

2
1.

The following claim appears in [Gav16].

Claim 4.4.5 (Two faraway distributions cannot both have near-maximum entropy, [Gav16]). If ν1 and
ν2 are two distributions in {0, 1}n, then min{H(ν1), H(ν2)}) ≤ n− ‖ν1 − ν2‖2/(8 ln 2).

We reproduce a proof for completeness.

Proof. Let u be the uniform distribution over {0, 1}n and d be ‖ν1 − ν2‖1. By the triangle inequality,
‖ν1 − u‖1 + ‖ν2 − u‖1 ≥ d. Without loss of generality, assume ‖ν1 − u‖1 ≥ d/2. From Pinsker’s inequality
(Lemma 4.4.4) we know that d2/4 ≤ 2 ln 2 dKL(ν1‖u). But

dKL(ν1‖u) =
∑
x

ν1(x) log ν1(x)
2−n =

∑
x

ν1(x)
(

log ν1(x) + log 1
2−n

)
= −H(ν1) + n.

Thus, d2 ≤ 8 ln 2(n−H(ν1)), or H(ν1) ≤ n− ‖ν1 − ν2‖2/(8 ln 2).

We next recall a lemma that has proved to be quite useful in counting combinatorial structures using ‘the
entropy method’.

Lemma 4.4.6 (Shearer’s Lemma). Let X = (X1, . . . , Xn) be a random variable. If P is a random variable
(independent of X) distributed on subsets of the coordinates [n], such that for every i ∈ [n], Pr[i ∈ P ] ≥ t,
then E[H(XP )] ≥ tH(X) where XP is the random variable (Xi : i ∈ P ).

In this section we use F to refer to the function SINK ◦ XOR on
(m

2
)

+
(m

2
)

variables in
order to cut down on Overfull \hboxes.

The communication lower bound we show on SINK ◦XOR will be via the Corruption bound
(Lower bound 9). In particular we will be using the combinatorial version of it (Theorem 3.2.25).

We define the distribution ν as follows. ν(x) = 1/2|F−1(0)| for x ∈ F−1(0) and ν(x) =
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1/2|F−1(1)| for x ∈ F−1(1). ν places exactly half mass on 0-inputs and half mass on 1-inputs.

Lemma 4.4.7 (Corruption Bound, analogous to Lemma 4.3.10). Let ε ≤ 1/12. Any rectangle
R that has ν(R ∩ F−1(1)) ≤ 4εν(R) satisfies

ν(R) ≤ 2−m(1/2−40ε)2/(64 ln 2).

Since ν is balanced, by Theorem 3.2.25 the above lemma implies that corr0
ε/2(F ) ≥ 1

2(1
2 −

ε)2m(1/2−40ε)2/(64 ln 2). This in turn implies that Rcc
1/320(F ) ≥ m(1/2− 1/4)2/(64 ln 2)−O(1) ≥

Ω(m). Since repeating a protocol is an efficient way to reduce error, Rcc
1/320(F ) = O(Rcc

1/3(F )).
Hence assuming Lemma 4.4.7, we have the following theorem.

Theorem 4.4.8. Rcc
1/3(SINK ◦ XOR) ≥ Ω(m).

Since we know rank1/3(F ) ≤ O(m4), rank+
1/3(F ) ≤ O(m5),

∥∥∥F̂∥∥∥
1
≤ m and γ2(F ) ≤ m, this

shows exponential separations between R⊕1/3(f) and the above measures. Indeed, the separation
is even between corruption and the above measures. Furthermore, since rank+

ε (F ) ≥ srect0
2ε(F )

(Theorem 3.4.6) and srect0
2ε(F ) is by definition (Lower bound 8) an upper bound on corr0

2ε(F ),
it follows that rank+

1/80(F ) ≥ Ω(m). This answers a question posed by Lee [Lee12] who asked
whether there can be a separation between approximate rank and approximate nonnegative
rank.

We now prove Lemma 4.4.7. We want to show that any 0-biased rectangle under ν must
have small ν-mass. We prove this in three steps.

• We show that any 0-biased rectangle must have a very small fraction (under the uniform
distribution) of 1-inputs.

• We then show that any rectangle with a very small fraction of 1-inputs must be small.

• We finish the proof by showing that any 0-biased small rectangle must have small ν
mass.

We formally state these three steps below and then prove them.

Claim 4.4.9 (Analogous to Claim 4.3.12). Let ε ≤ 1/8. A rectangle R such that ν(R∩F−1(1)) ≤
4εν(R) must satisfy

|R ∩ F−1(1)|
|R|

< 10ε |F
−1(1)|

22(m2 ) .

Claim 4.4.10 (Analogous to Claim 4.3.13). If a rectangle R = A×B satisfies

|R ∩ F−1(1)|
|R|

< 10ε |F
−1(1)|

22(m2 ) ,

then min{|A|, |B|} ≤ 2(m2 )−m(1/2−40ε)2/(64 ln 2).
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Claim 4.4.11. If a rectangle R satisfies ν(R ∩ F−1(1)) ≤ ν(R)/3, then ν(R) ≤ |R|/22(m2 ).

The proof of Claim 4.4.9 is syntactically equivalent to the proof of Claim 4.3.12.

Proof idea of Claim 4.4.10: This proof goes via the following intuition.

1. The rectangle R has a very small fraction of sinks relative to its size.

2. Hence for many vertices, R has a very small fraction of those vertices as sinks.

3. Any vertex v that is a sink very rarely in R must have its Ev projections on Alice’s side
and Bob’s side quite “different” from each other.

4. Hence, either Alice’s or Bob’s projections must be small.

5. All these projections being small for Alice, say, shows that A must be really small, thus
completing the proof via Shearer’s lemma.

We now formalize this intuition.

Proof of Claim 4.4.10. We mimic here the first few steps of the proof of Claim 4.3.13 for the
corresponding lower bound on RPDT’s. Let S be the set of inputs (x, y) such that x ⊕ y
represents a graph with a sink, i.e. S = F−1(1). Let Si ⊂ S be the set of inputs in which the
graph represented has vertex vi as a sink.

Consider the set I of all i ∈ [m] such that

|R ∩ Si|
|R|

≤ 20ε |Si|
22(m2 ) .

Then, by the condition assumed in the claim

10ε |S|
22(m2 ) >

|R ∩ S|
|R|

=
m∑
i=1

|R ∩ Si|
|R|

≥
∑
i∈Ī

|R ∩ Si|
|R|

> |Ī|20ε |S|/m
22(m2 ) = |Ī| · 1

m
· 20ε |S|

22(m2 ) ,

where the second inequality follows from definition of I and the fact that |Si| = |S|/m. Hence
|I| ≥ m/2, and for all i ∈ I,

|R ∩ Si|
|R|

≤ 20ε |Si|
22(m2 ) = 20ε2−(m−1).

Here, the proof departs from the corresponding R⊕ lower bound. Fix any i ∈ I. Define the
distribution Avi by the following sampling procedure. Sample an input uniformly at random
from A and project it to Evi . Similarly define Bvi . Define B′vi = Bvi ⊕ zi.

We now show that the distributions Avi and B′vi are far apart, and hence one of them
has a loss in entropy by Claim 4.4.5. We use the notation α ∈U S to denote that α is drawn
uniformly at random from S.
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20ε2−(m−1) ≥ |R ∩ Si|
|R|

= Pr
X,Y ∈UR

[Xvi ⊕ Yvi = zi]

= E
X∈UA

[
E

Y ∈UB

[
1Xvi⊕Yvi=zi

]]
= E

X∈UA

[
Pr

Y ∈UB
[Xvi ⊕ Yvi = zi]

]
= E

X∼Avi

[
Pr

Y∼Bvi
[X ⊕ Y = zi]

]

= E
X∼Avi

[
Pr

Y∼B′vi
[X = Y ]

]
.

Let
T =

{
x ∈ supp(Avi)

∣∣∣∣∣ Pr
Y∼B′vi

[Y = x] ≤ 40ε2−(m−1)
}
.

By Markov’s inequality, Avi(T ) ≥ 1/2. But T is defined such that B′vi(T ) ≤ 40ε2−(m−1) ·
|supp(Avi)| ≤ 40ε. Hence,

‖Avi −B′vi‖1 ≥ 1/2− 40ε

=⇒ (1/2− 40ε)2 ≤ 8 ln 2 · (m− 1−min{H(Avi), H(B′vi)}) (by Claim 4.4.5)

=⇒ min{H(Avi), H(B′vi)} ≤ m− 1− (1/2− 40ε)2/(8 ln 2).

Note that the distributions Bvi and B′vi are the same distribution but for a relabelling of
the elements in its support. Hence H(Bvi) = H(B′vi).

Either Alice’s side or Bob’s side hence experiences a loss in entropy for at least half the
projections in I. Without loss of generality, we assume it is Alice’s side. Since |I| ≥ m/2,
the expected entropy of Avi (when uniformly sampling i ∈ [m]) is at most m− 1− 1/4 · (1/2−
40ε)2/(8 ln 2).

Note that each coordinate in Alice’s input appears in exactly 2 out of the m projections.
We now apply Shearer’s lemma (Lemma 4.4.6) with X ∈U A and P uniform over {Evi}i∈[m].
We have t = 2/m and E[H(XP )] ≤ m− 1− (1/2− 40ε)2/(32 ln 2). Hence we can conclude that

H(X) ≤ m

2 ·
(
m− 1− (1/2− 40ε)2/(32 ln 2)

)
.

Since X is uniform over A, we also have

|A| ≤ 2(m/2)(m−1−(1/2−40ε)2/(32 ln 2)) = 2(m2 )−m(1/2−40ε)2/(64 ln 2).
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Proof of Claim 4.4.11.

|R|
22(m2 ) ≥

|R ∩ F−1(0)|
22(m2 )

≥ .9 |R ∩ F
−1(0)|

|F−1(0)|
= 1.8ν(R ∩ F−1(0)) (by definition of ν)

≥ ν(R). (by assumption ν(R ∩ F−1(0)) ≥ 2ν(R)/3)

Proof of Lemma 4.4.7. By chaining together Claim 4.4.9, Claim 4.4.10 and Claim 4.4.11, we
get that if ε ≤ 1/12 and ν(R ∩ F−1(1)) ≤ 4εν(R), then

ν(R) ≤ |R|
22(m2 ) ≤ 2−m(1/2−40ε)2/(64 ln 2).

4.4.1 A Variant of SINK

SINK ◦ XOR demonstrated a function which had small approximate rank but large approximate
nonnegative rank. However, this function’s complement has small approximate nonnegative
rank. In this subsection, we define a variant of SINK ◦ XOR which still has small approximate
rank, but the approximate nonnegative rank of both this function and its complement are
large.

Define the function VARSINK : {0, 1}1+(m2 ) → {0, 1} as follows. We interpret the last
(m

2
)

variables exactly the way we did for SINK. The output of the function is given below, where b
is the first bit and x is the remaining

(m
2
)

bits.

VARSINK(b, x) = b⊕ SINK(x).

Let M0,i(b, x) be the 0 − 1 indicator that is 1 if and only if b = 0 and vi is a sink in x.
Similarly, let M1,i(b, x) be 1 if and only if b = 1 and vi is a sink in x. Let M1(b, x) be 1 if and
only if b = 1. Note that each of M0,i and M1,i and M1 is a subcube. Also

VARSINK(b, x) =
m∑
i=1

M0,i(b, x) +M1(b, x)−
m∑
i=1

M1,i(b, x).

Hence
∥∥∥ ̂VARSINK

∥∥∥
1
≤ 2m+ 1 and so rank1/80(MVARSINK◦XOR) ≤ O(m4).
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Now, note that if we set b = 0, VARSINK(0, x) = SINK(x). So

rank+
1/80(MVARSINK◦XOR) ≥ 2Ω(m).

If we set b = 1, VARSINK(1, x) = SINK(x). And hence

rank+
1/80(MVARSINK◦XOR) ≥ 2Ω(m).
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Chapter 5

Extensions based on SINK: Subspace
Designs

This work was done in collaboration with Arkadev Chattopadhyay and Ankit Garg. A
preprint is available online. [CGS20]

In this chapter, we look at some questions raised by the refutation of the Log-Approximate-
Rank Conjecture in the previous chapter. We start by analyzing our SINK counterexample
and see whether it has any relevance to the Log-Rank and Log-Approximate-Nonnegative
Rank Conjectures.

5.1 On Extensions to LRC and LANRC

As described in the previous chapter, SINK is a disjoint union of a few subcubes. Each subcube
composed with XOR is easy to compute via randomized communication, yet SINK ◦ XOR is
hard. If the Log-Approximate-Rank Conjecture were true, then the communication complexity
of SINK ◦ XOR would be polylogarithmic in the number of subcubes, and hence it is false.
Similarly the Log-Rank Conjecture would imply that the disjoint union of easy functions must
be easy, and so one could disprove it by providing a disjoint union of easy functions that is
hard. However, such a function is not possible.

Theorem 5.1.1 (Implicit in [Yan91]). Let F = ∑
i∈[m] Fi, where (1) the sets F−1

i (1) are
disjoint, and (2) each Fi has deterministic communication complexity at most c. Then the
deterministic communication complexity of F is at most O((c+ logm)2).

Proof. We know from Lower bound 1 that each F−1
i (1) can be partitioned into at most

2c rectangles. hence F−1(1) can be partitioned into at most m2c rectangles. Then by
Theorem 3.2.2, the deterministic communication complexity of F is at most O(log(m2c)2).

99
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We now look at the Log-Approximate-Nonnegative-Rank Conjecture. In this case, what
would suffice to disprove the conjecture is a function f such that (1) f−1(1) is a disjoint union
of m1 subcubes, (2) f−1(0) a disjoint union of m0 subcubes, and (3) F := f ◦ XOR is hard for
randomized communication complexity (larger than polylog(m0,m1)). However such an f is
also impossible if we want F to have complexity nΩ(1). It is implicit in a work of Ehrenfeucht
and Haussler [EH89] that such a function f does not exist. Indeed, their result implies that
such an f does not exist even under the milder restriction that f and f can be represented as
a union of a small number of not necessarily pairwise disjoint subcubes. We explicitly reprove
this here, condensing their proof to only pertain to our question.

Lemma 5.1.2. Let f : {0, 1}n → {0, 1} and let S and T be sets of subcubes such that
f−1(1) = ⋃

S∈S S and f−1(0) = ⋃
S∈T S. Then R⊕( f) ≤ Õ((log(|S|) + log(|T |))2 logn)).

Note that this theorem implies that for any f satisfying points (1) and (2) above, R1/3(f ◦
XOR) ≤ Õ((log(m0) + log(m1))2 logn)).

Proof. It was proved in [EH89] that f has a decision tree with a few leaves. We start with
reproducing this proof and then we show that this implies a small-cost RPDT.

Since ⋃S∈S∪T S = {0, 1}n, it follows that one of these subcubes, say S, which is without
loss of generality in S, has size at least 2n/(|S|+ |T |). Let fixed(S) be the set of coordinates
that S fixes. Since S is large, |fixed(S)| must be at most log(|S| + |T |). Now S is disjoint
from every subcube in T since S contains only 1-inputs and the subcubes in T contain
only 0-inputs. For S to be disjoint from a subcube T , there must be an i ∈ fixed(S) ∩
fixed(T ) such that S sets xi differently from how T sets xi. Let i = arg maxi∈fixed(S) |{T ∈
T | xi is set differently in S and T}|. By the pigeonhole principle, the ith bit must be set
differently in at least |T |/ log(|S|+ |T |) subcubes.

We create a decision tree for f by querying xi. The answer to the query either disagrees
with xi’s setting in S (in which case we know for sure that x 6∈ S) or it agrees with the
setting (in which case we know |T |/ log(|S|+ |T |) subcubes that x does not belong to). In the
latter case, we call the answer a “shrinking” answer and we say that T “shrunk”. (If we had
assumed that the large subcube S was in T instead of S, then it would be S that “shrunk”.)
Having queried xi and received the answer, the function f ′ : {0, 1}n−1 → {0, 1} we are now
computing satisfies f−1(1) = ⋃

S∈S′ S and f−1(0) = ⋃
S∈T ′ S where either |S ′| ≤ |S| − 1

or |T ′| ≤ |T | (1− 1/ log(|S|+ |T |)). In either case, log(|S| + |T |) ≥ log(|S ′| + |T ′|). We
recursively build the decision tree.

Note that the maximum height of the decision tree is at most n, since there are only n

variables. Also note that every internal query in the tree has a designated “shrinking” answer
and a “non-shrinking” answer, with the “shrinking” answer either “shrinking” S or T . We
can specify a leaf of the tree by specifying the path from the root to the leaf, each edge in
the path being specified as either the “shrinking” edge or the “non-shrinking” edge. But, as
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the following calculation shows, the number of “shrinking” edges in a path can be at most
(log(|T |) + log(|S|)) log(|S|+ |T |) + 2.

The number of times T can “shrink” is at most dlog(|T |) log(|S|+ |T |)e, since shrinking it
that many times will reduce its size to at most

|T |
(

1− 1
log(|S|+ |T |)

)log(|T |) log(|S|+|T |)
≤ |T |e− log(|T |) < 1

at which point the function must evaluate to 1.
Similarly S can “shrink” at most dlog(|S|) log(|S|+ |T |)e times. So the number of leaves

is at most the number of n bit strings with at most (log(|T |) + log(|S|)) log(|S|+ |T |) + 2 1s.
This is at most (n+ 1)(log(|T |)+log(|S|)) log(|S|+|T |)+2, or 2O((log(|T |)+log(|S|))2 logn).

We now show that a decision tree with N leaves can be simulated by an RPDT of depth
Õ(logN). This follows by balancing the decision tree (see for example [KN97], Lemma 2.8).
If, for every node v, one can efficiently compute whether the input will reach v, then one can
efficiently find the leaf that the input will reach. Starting from the root, go down the tree
while ensuring that the number of leaves below your node is at least 2N/3. When this is no
longer possible, one of the children of your node, say v, will have between 2N/3 and N/3
leaves. Compute whether the input reaches v. If it does, consider the subtree rooted at v
and recursively find out which of the at most 2N/3 leaves the input will reach. If it does not
reach v, consider the original tree with the subtree rooted at v removed, and recursively find
out which of the at most 2N/3 leaves the input will reach. This recursion must stop within
dlog3/2Ne steps.

In the case of a decision tree, whether or not an input will reach v is computed by a
conjunction. It is well known that a randomized parity decision tree can compute a conjunction
with error ε using at most dlog εe queries. By setting ε = dlog3/2Ne/3, we get a randomized
parity decision tree with error ≤ 1/3 and cost O(logN log logN).

Hence RPDT1/3(f) ≤ Õ((log(|T |) + log(|S|))2 logn).

A nice combinatorial consequence of the above is that if {0, 1}n has a partition into c

subcubes, then there is decision tree that refines this partition and has at most 2log3 c logn

leaves. One can create such a tree by considering the function g : {0, 1}n → {0, 1}dlog ce that
maps every input to the subcube it lies in. Each of the dlog ce bits of the output is computed
by a function whose 1-inputs and 0-inputs are both partitioned into at most c subcubes. Hence
each of them has a decision tree with 2log2 c logn leaves. By composing these functions, we get
a decision tree with (2log2 c logn)dlog ce leaves.

However, this above theorem is specifically about subcubes. We need not restrict ourselves
to subcubes. Affine subspaces (which we refer to simply as subspaces) of Fn2 are also as capable
as subcubes for our purposes. Can we use subspaces instead of subcubes to get better results?
For instance, the above theorem is not yet known for subspaces.
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Conjecture 5.1.3: Affine Subspace Partition

Let P be a partition of {0, 1}n into c affine subspaces. Then there is a parity decision
tree that refines this partition and has only 2polylog(c,n) leaves.

The switch to subspaces has more potential than this. For instance, there is evidence that
it can lead to stronger counterexamples of the Log-Approximate-Rank Conjecture, and also
further close the gap between approximate rank and randomized communication complexity.
The search for more counterexamples to the LARC is also important because any total function
that exponentially separates randomized and quantum communication complexity must also
refute the LARC.

To elaborate on how subspaces are used to provide evidence for stronger refutations of the
LARC, we first look at some preliminaries about subspaces and then move on to the object du
chapitre, Subspace Designs.

5.2 Subspace Preliminaries

5.2.1 Notation

Given a subspace S ⊆ Fn2 , we use dim(S) to denote its dimension and codim(S) to denote
its codimension i.e. n− dim(S). Given the standard bilinear form 〈·, ·〉 on Fn2 , we can define
the dual space of S as the set {` ∈ Fn2 | ∀x ∈ S 〈`, x〉 = 0}. It is a subspace of dimension
n− dim(S) and its dual space is S.

Given a subspace S of dimension k, fix a basis L = {`1, . . . , `n−k} of its dual space. For
every point a ∈ Fn−k2 , we can define the set SLa = {x ∈ Fn2 | ∀i ∈ [n− k] 〈`i, x〉 = ai}. These
are called affine shifts, or cosets, of S. Sets of the kind SLa are also called affine subspaces.
Each coset of S also has size 2k. We can also define a coset map of S with respect to a basis
of its dual space as

cosetLS(x) = (〈`1, x〉, . . . , 〈`n−k, x〉).

It is easy to see that the choice of basis for the dual space does not affect the set of cosets of
S. It merely affects the string a ∈ Fn−k2 that is used to refer to a specific coset. Hence we will
refer to the coset map as cosetS , and we may choose an arbitrary basis of the dual space of S
in order to interpret the coset map.

From here on, we will use {0, 1} to refer to F2. The values 0 and 1 represent the additive
and multiplicative identity of F2.

5.2.2 Basic facts about subspaces

Here we mention two facts about subspaces that will be useful.
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Lemma 5.2.1 (Disjoint Subspaces). Let S be a subspace of {0, 1}n of dimension d1. Let T be
a subspace of {0, 1}n of dimension d2 chosen uniformly at random. Then PrT [S ∩ T = {0}] ≥
1− n2d1+d2−n.

Proof. Let us generate T by choosing d2 vectors {v1, . . . , vd2}, each vector independent of
the previous ones, in order to form a basis for T . The subspace S intersects T trivially if
and only if for all i ∈ [d2], vi 6∈ span({vj}j<i ∪ S). We call these events E1, . . . , Ed2 . When
choosing vi to add to the basis for T , there are 2n − 2i−1 choices, since |span({vj}j<i)| = 2i−1.
Conditioned on E1, . . . , Ei−1, we also know that |span({vj}j<i∪S)| = 2i−1+d1 . The probability
of Ei occurring is

| ({0, 1}n \ span({vj}j<i)) \ span({vj}j<i ∪ S)|
|{0, 1}n \ span({vj}j<i)|

= |{0, 1}
n \ span({vj}j<i ∪ S)|

|{0, 1}n \ span({vj}j<i)|
.

We can then calculate the probability of S ∩ T = ∅ as

Pr

 ⋂
i∈[d2]

Ei

 =
d2∏
i=1

Pr [Ei | E1, · · · , Ei−1] =
d2∏
i=1

2n − 2d1+i−1

2n − 2i−1

≥
(

1− 2d1+d2

2n

)d2

≥ 1− d2
2n−d1−d2

.

Lemma 5.2.2. Let V and W be affine subspaces of {0, 1}n satisfying

|V ∩W |
|W |

<
|V |
2n .

Then V ∩W = ∅.

Proof. Let {〈vi, x〉 = ai}i∈[k] be the constraints defining the affine subspace W . We define
the affine subspaces W0,W1, · · · ,Wk as follows. The constraints for Wj are {〈vi, x〉 = ai}i∈[j].
Clearly W0 = {0, 1}n and Wk = W .

Now let us assume that |V ∩Wi| 6= 0 and is hence an affine subspace. The set V ∩Wi+1 is
the same affine subspace with the added constraint 〈vi+1, x〉 = ai+1.

• If this constraint was already implied by the constraints in V ∩Wi, then |V ∩Wi+1| =
|V ∩Wi|.

• If this constraint is incompatible with the constraints in V ∩Wi, then |V ∩Wi+1| = 0.

• If this constraint was independent of the constraints in V ∩Wi, then |V ∩Wi+1| =
|V ∩Wi|/2.
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Hence |V ∩Wk| is either 0 or is at least |V ∩W0|/2k. On the other hand, |W |/2n = 1/2k.
Since V ∩Wk = V ∩W and V ∩W0 = V , we can rewrite this as

V ∩W 6= ∅ =⇒ |V ∩W |
|V |

≥ |W |2n .

We also will use a corruption lower bound in the context of Randomized PDTs. This is
slightly simpler than the more general communication complexity corruption bound.

Lemma 5.2.3 (Corruption, RPDT version). Let f : {0, 1}n → {0, 1}. Let µ be a distribution
on {0, 1}n such that µ(f−1(0)) = 1

2 . Let ε ≤ 1/8. Then an ε-error cost-c RPDT computing f
implies the existence of an affine subspace W such that

• µ(W ∩ f−1(1)) ≤ 4εµ(W ) and

• codim(W ) ≤ c.

Proof. Note that an ε-error cost-c RPDT T computing f implies that for any distribution µ

over the inputs of f , there is an RPDT whose expected error, ET,x∼µ[|T (x)− f(x)|], is at most
ε. Since T is a distribution over deterministic parity decision trees, there is a deterministic
parity decision tree whose expected error is also at most ε.

Suppose that a subspace such as the one posited in the lemma statement did not exist.
Then for any cost-c parity decision tree T , we may compute the error made as follows. Note
that the set of inputs that reach any specific leaf forms an affine subspace of codimension at
most c, with each pair of such affine subspaces being disjoint. Let L be the set of these affine
subspaces corresponding to the leaves of T that are labelled 0. Then ∑V ∈L µ(V ) ≥ 1

2 − ε,
since otherwise T would be outputting 1 on more than an ε mass of 0-inputs. But then∑
V ∈L µ(V ∩ f−1(1)) ≥∑V ∈L 4εµ(V ) ≥ 4ε(1

2 − ε) ≥ 2ε− 4ε2 > ε. So on more than an ε mass
of 1-inputs, T outputs 0. Hence the tree T is erring on a larger than ε mass of inputs and we
have a contradiction.

5.3 Subspace Designs

Definition 5.3.1 (Subspace Design). An n-dimensional (s, h)-subspace design is a set of
subspaces {S1, S2, . . . , Sm} of {0, 1}n such that for all subspaces T of dimension at most s, at
most h of the m subspaces intersect T non-trivially.

We call a set of subspaces {V1, V2, . . . , Vm} of {0, 1}n an n-dimensional (s, h)-dual subspace
design if their duals form an (s, h)-subspace design. Dual subspace designs have an alternate
characterization based on the notion of independent subspaces.
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Definition 5.3.2 (Independent Subspaces). Subspaces S, T ⊆ {0, 1}n are independent if their
coset maps are independent. That is, let LS and LT be arbitrary bases for the dual spaces of
S and T . For a variable x chosen uniformly at random from {0, 1}n, consider the random
variables cosetS(x) and cosetT (x). S and T are independent if and only if these two random
variables are independent. More formally, for every a ∈ Fcodim(S)

2 , b ∈ Fcodim(T )
2 , we want that

Pr[cosetS(x) = a ∧ cosetT (x) = b] = Pr[cosetS(x) = a] Pr[cosetT (x) = b] = 2−codim(S)−codim(T ).
In particular this implies that every coset of S intersects with every coset of T .

We now state the alternate characterization of dual subspace designs.

Claim 5.3.3. The set {V1, V2, · · · , Vm} of {0, 1}n is an n-dimensional (s, h)-dual subspace
design if and only if for all subspaces W of codimension at most s, at least m− h of the m
subspaces are independent from W .

This claim follows from the following lemma relating trivial subspace intersections and
independent subspaces.

Lemma 5.3.4 (Independent Subspaces). Subspaces S and T of Fn2 are independent if and
only if the dual space of S and the dual space of T intersect trivially (i.e. only at the point
0 ∈ Fn2 ).

Proof. Let V and W be the dual spaces of S and T respectively. If V and W intersected at a
non-zero point ` ∈ Fn2 , then consider bases LS and LT for V and W respectively, wherein ` is
the first element of LS and also the first element of LT . The coset maps of S and T with this
choice of LS and LT cannot be independent since for all x ∈ Fn2 , the first entries of cosetLSS (x)
and cosetLTT (x) will always agree.

For the other direction, let LS and LT be arbitrary bases for V and W respectively. We
will show that if V and W intersect trivially, then the coset maps are independent. Assuming
V and W intersect trivially, this means that span(LS) ∩ span(LT ) = {0}. Hence L = LS ∪ LT
is an independent set of size dim(V ) + dim(W ). Hence for a uniformly random point x ∈ Fn2
and any a ∈ F codim(S)

2 , b ∈ Fcodim(T )
2 , Pr[cosetLSS (x) = a ∧ cosetLTT (x) = b] = 2−dim(V )−dim(W ) =

Pr[cosetLSS (x) = a] Pr[cosetLTT (x) = b].

A useful corollary of Claim 5.3.3 is that an (s, h)-dual subspace design also forms a hitting
set for the set of all affine subspaces of codimension at most s. We will use this fact to lower
bound the randomized parity decision tree complexity of unions of subspaces.

Corollary 5.3.5. Let {V1, V2, · · · , Vm} be an n-dimensional (s, h)-dual subspace design. For
all affine subspaces W of codimension at most s, at least m− h of the m subspaces intersect
with W .

Proof. This follows from Claim 5.3.3 and the fact that if two subspaces S and T are independent,
then S will intersect any affine shift of T non-trivially.
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5.3.1 RPDT Hardness of Subspace Designs

Theorem 5.3.6. Let V be an n-dimensional (s, h)-dual subspace design of size m.
Let f be the function defined as f−1(1) = ⋃

V ∈V V . We now show that R⊕ε (f) ≥ s as long
as ε < m−h

8m
|f−1(0)|

2n .

We will be instantiating this with dual subspace designs such that h� m and |f−1(0)|/2n ≈
1. In such an instantiation, the condition on ε is just that it is a constant less than 1/8.

Proof. Consider the distribution µ defined over the inputs of f as follows.

• Sample z ∼unif {0, 1}.

• If z = 0, output a uniformly random input from f−1(0).

• Otherwise, sample V ∼unif V.

• Output a uniformly random input from V .

Assuming that f is computed by an ε-error cost-c RPDT, Lemma 5.2.3 implies the existence
of a subspace W such that

• µ(W ∩ f−1(1)) ≤ 4εµ(W ) and

• codim(W ) ≤ c.

Assume we have a W such that µ(W∩f−1(1)) ≤ 4εµ(W ). This means that µ(W∩f−1(1)) ≤
4ε

1−4εµ(W ∩ f−1(0)). We also know the following from the definition of µ.

µ(W ∩ f−1(1)) = 1
2 ·

1
|V|

∑
V ∈V

|W ∩ V |
|V |

µ(W ∩ f−1(0)) = 1
2 ·
|W ∩ f−1(0)|
|f−1(0)| ≤ 1

2 ·
|W |
|f−1(0)|

Putting these together, we get that

1
|V|

∑
V ∈V

|W ∩ V |
|V |

≤ 4ε
1− 4ε

|W |
|f−1(0)| .

Now if ε < m−h
8m

|f−1(0)|
2n ≤ 1

8 , then 4ε
1−4ε < m−h

m
|f−1(0)|

2n . This implies that less than
m− h subspaces of V can satisfy |W∩V ||V | ≥

|W |
2n , and hence more than h of them must satisfy

|W∩V |
|V | < |W |

2n . This means that W ∩ V = ∅ (Lemma 5.2.2). In other words, W is an affine
subspace that managed to evade more than h subspaces of V. But by Corollary 5.3.5, if W is
of codimension at most s, then it is disjoint from at most h subspaces of V . So W must be of
codimension more than s.

Hence the codimension of W , and thereby the cost of the RPDT, is at least s.
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Remark 5.3.7. The above proof would also work for any union of affine subspaces which
forms a hitting set for the set of all large affine subspaces the way that the dual subspace design
does.

5.4 A Mere Cubic Gap Between Approximate Sparsity and
Randomized PDT Complexity

In this section, we instantiate Theorem 5.3.6 with random subspaces to get a mere cubic gap
between RPDT complexity and approximate sparsity. It is known that there are efficient prob-
abilistic constructions of subspace designs. In fact, efficient explicit deterministic constructions
are also known [GK16, GXY17]. We go through a probabilistic construction here, and use it
to show our main theorem.

Theorem 5.4.1. Let m = 100n. Let V1, V2, . . . , Vm be subspaces of {0, 1}n chosen indepen-
dently and uniformly at random from the set of subspaces of dimension 2n/5. With probability
1− o(1) the following two statements are true.

• V = {V1, . . . , Vm} forms an (n/5,m/10)-dual subspace design.

• Every pair of subspaces in V intersects trivially.

Proof. Let W be a fixed affine subspace of {0, 1}n of dimension 4n/5. Let V = {V1, · · · , Vm} be
subspaces of {0, 1}n chosen independently and uniformly at random from the set of subspaces
of dimension 2n/5.

Since the duals of W and V1 have dimension n/5 and 3n/5 respectively, the probability
that W and V1 are independent is at least 1− n2−n/5 (Lemma 5.2.1). This is independently
true of W and each V ∈ V. The probability that W is not independent with at least m/10 of
the m subspaces is at most

( m
m/10

)
(n2−n/5)m/10.

Since the number of subspaces of dimension 4n/5 is at most (2n)4n/5 = 24n2/5, the
probability that there exists such a subspace W that is not independent with at least m/10 of
the subspaces in V is at most 24n2/5( m

m/10
)
(n2−n/5)m/10.

Setting m = 100n, this upper bound is at most 2.8n2+100n+10n logn−2n2 = o(1).
Hence with high probability, V is an (n/5,m/10)-dual subspace design.
Let f be defined as in the theorem statement. Note that since V1 and V2 are random

subspaces of dimension 2n/5, the probability that they intersect only at 0 is at least 1−n2−n/5.
The probability that any two subspaces in V intersect at more than just 0 is at most

(m
2
)
n2−n/5 =

o(1).

Theorem 5.4.2 (Separation). Let m = 100n. Let V = {V1, V2, . . . , Vm} be a set of subspaces
of {0, 1}n chosen independently and uniformly at random from the set of subspaces of dimension
2n/5. Let f be the function that outputs 1 on the set

⋃
V ∈V V . With probability 1− o(1) the

following two statements are true.
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• Randomized parity decision tree complexity of f is at least Ω(n).

• The spectral norm of f (sum of absolute values of its Fourier coefficients) is upper
bounded by O(n) and its approximate Fourier sparsity is upper bounded by O(n3).

Hence there exist functions which have a merely cubic gap between approximate Fourier sparsity
and RPDT complexity.

Proof. We know from Theorem 5.4.1 that with probability 1 − o(1) the set V forms an
(n/5,m/10)-dual subspace design. We also can trivially lower bound |f−1(0)|/2n by 1−m2−3n/5.
Since V is an (n/5,m/10)-dual subspace design, we can conclude from Theorem 5.3.6 that for
ε ≤ 1/10, R⊕ε (f) ≥ n/5.

We also know from Theorem 5.4.1 that with probability 1−o(1), every pair of subspaces from
V intersects trivially. When this event holds, f can be represented as ∑V ∈V 1V − (m− 1)1V0

where V0 = {0} is the trivial subspace of dimension 0. Since the spectral norm of a subspace is
equal to 1, the spectral norm of f is upper bounded by m+m− 1 < 2m. Using Theorem 3.4.2,
this also implies that sparε(f) ≤ O(m2n/ε2) = O(n3) for any constant ε.

This concludes the proof of the merely cubic gap.

5.5 On Extending this to Communication

In this section, we state a plausible conjecture that would imply a lower bound on the
randomized communication complexity of XOR compositions of our functions.

In the RPDT lower bound, we showed that in order for an affine subspace to avoid most of
the subspaces of a dual subspace design, the codimension of the affine subspace needs to be
large. We could hope for a similar statement in the communication world: For a rectangle to
put very little mass on most of the subspaces making up a dual subspace design (i.e., puts very
little mass on inputs (x, y) such that x⊕ y lies in the subspaces), the mass of the rectangle
must be 2−Ω(n). One particularly neat conjecture that would imply that statement is the
following, in which Uk denotes the uniform distribution over k elements.

Conjecture 5.5.1. There exist constants 0 < α < 1, β > 0 and k ≥ 1 such that the following
holds. Let V = {V1, . . . , Vm} be an n-dimensional (s, h)-dual subspace design. Let Bi be the
coset map of Vi. Let X be a random variable over {0, 1}n such that ‖Bi(X)− U2codim(Vi)‖1 ≥ α
for more than kh values of i ∈ [m]. Then H(X) ≤ n− βs.

The merely cubic gap in the RPDT world used random subspaces. So for extending it
to communication, it would be okay for us to bypass dual subspace designs and prove the
theorem for random subspaces instead.

Conjecture 5.5.2. There exist constants 0 < α < 1, β > 0 such that the following holds.
Let m = 100n. Let V1, V2, . . . , Vm be random subspaces of {0, 1}n of dimension 2n/5, and
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let B1, B2, · · · , Bm be their coset maps. Let X be a random variable over {0, 1}n such that
‖Bi(X) − U23n/5‖1 ≥ α for at least m/3 values of i ∈ [m]. Then with high probability,
H(X) ≤ n− βn.

First of all note that the conjectures are true when X is the uniform distribution over an
affine subspace. To see this, suppose X is the uniform distribution over an affine subspace W .
H(X) ≥ n − s is the same as saying that codim(W ) ≤ s. Then by Claim 5.3.3, for at least
m− h of the subspaces V1, . . . , Vm, Vi and the dual space of W are independent, which implies
that Bi(X) will be exactly uniform (U2codim(Vi)).

We discuss now why the Conjectures 5.5.1 and 5.5.2 appear to be a bit tricky to prove.
While the conjectures are true for affine subspaces, the number of distributions (or even the
number of subsets of {0, 1}n) is much larger (doubly exponential in n), so the conjectures are
a leap of faith in this sense. But we haven’t been able to come up with counterexamples and it
would be very interesting to do so. The conceptual way to view the conjectures, e.g. Conjecture
5.5.2 to be concrete, is that if a random variable X has the property that when projected
down to 2n/5 bits in various ways it loses Ω(1) bits of entropy, then X overall loses Ω(n) bits
of entropy. Shearer’s lemma talks about these kind of statements. While in Shearer’s lemma,
the projections are onto subcubes, there are generalizations called Brascamp-Lieb inequalities
which talk about more general projections (e.g. see [Chr13]). However, the Brascamp-Lieb
inequalities can at best guarantee an Ω(n/k)-bit entropy loss in X if there is an Ω(1)-bit
entropy loss while projecting X to k bits in various ways. What we want is much stronger.
This is one difficulty.

The other difficulty is that a Fourier type approach doesn’t seem to work either. One
can control ‖Bi(X)− U2codim(Vi)‖1 by bounding the `2 distance and then trying to bound the
Fourier coefficients of the distribution of X on the dual space of Vi. But this doesn’t give any
meaningful bound (if done in a naive way at least).

We now state the lower bound on the randomized communication complexity of a dual
subspace design composed with XOR that we get assuming Conjecture 5.5.1. For a set of
subspaces in n dimensions V = {V1, V2, . . . , Vm}, let fV be the function on n bits that outputs
1 on inputs in ∪V ∈VV .

Theorem 5.5.3. Let us assume Conjecture 5.5.1 holds with constants α, β and k. Let
V = {V1, V2, . . . , Vm} be an n-dimensional (s, h)-dual subspace design and define γ so that
| ∪V ∈V V | = γ2n. Let F = fV ◦ XOR. For ε < (1−α)2

4
m−2kh

8m (1 − γ), the ε-error randomized
communication complexity of F is at least βs+ log(1− γ).

Proof. We first prove the statement with α = 1
2 . Hence we only assume ε < 1

16
m−2kh

8m (1− γ)
For any V ∈ V, let SV = {(x, y) ∈ {0, 1}n × {0, 1}n | x⊕ y ∈ V }. Note that |SV | = 2n|V |

and F−1(1) = ∪V ∈VSV . Consider the distribution ν defined over the inputs of F as follows.

• Sample z ∼unif {0, 1}.
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• If z = 0, output a uniformly random input from F−1(0).

• Otherwise, sample V ∼unif V.

• Output a uniformly random input from SV .

Assuming F is computed by an ε-error cost-c communication protocol, Lower bound 9
implies the existence of a rectangle R such that

• ν(R ∩ F−1(1)) ≤ 4εν(R) and

• ν(R) ≥ 2−c−3.

Assume we have an R such that ν(R∩F−1(1)) ≤ 4εν(R). This means that ν(R∩F−1(1)) ≤
4ε

1−4εν(R ∩ F−1(0)). We also know the following from the definition of ν.

ν(R ∩ F−1(1)) = 1
2 ·

1
|V|

∑
V ∈V

|R ∩ SV |
|SV |

ν(R ∩ F−1(0)) = 1
2 ·
|R ∩ F−1(0)|
|F−1(0)| ≤ 1

2 ·
|R|

|F−1(0)|

Putting these together, we get that

1
|V|

∑
V ∈V

|R ∩ SV |
|SV |

≤ 4ε
1− 4ε

|R|
|F−1(0)| .

Now if ε < m−2kh
128m

|F−1(0)|
22n < 1/8, then 4ε

1−4ε <
m−2kh

16m
|F−1(0)|

22n . This implies that less than
m− 2kh subspaces of V can satisfy |R∩SV ||SV | ≥

|R|
16·22n , and hence more than 2kh of them must

satisfy |R∩SV ||SV | < |R|
16·22n . Let us fix such a V .

Let cosetV denote the function cosetLVV for some fixed basis LV of the dual space of V .
Let R = A×B. Then |R∩SV ||R| is the probability that, when x and y are sampled uniformly at
random from A and B, cosetV (x) = cosetV (y). Let AV be the distribution of cosetV (x) and
BV be the distribution of cosetV (y). The condition |R∩SV ||R| < |SV |

16·22n can be rewritten as

Pr
x′∼AV ,y′∼BV

[x′ = y′] < |SV |
16 · 22n = 1

16 · 2codim(V ) .

It follows that AV (S) < 1/4 where S = {y′ | BV (y′) ≥ 1
4·2codimV }. However, BV (S) must be at

least 3/4, since BV (S) ≤ 1/4.
Hence AV and BV have total variational distance at least 1

2 , and ‖AV −BV ‖1 ≥ 1. By the
triangle inequality, max{‖AV − U2codim(V )‖1, ‖BV − U2codim(V )‖1} ≥ 1

2 .
Hence, either there are more than kh subspaces that satisfy ‖AV − U2codim(V )‖ ≥ 1

2 or there
are more than kh subspaces that satisfy ‖BV − U‖ ≥ 1

2 . Without loss of generality we assume
the former. Now we use our conjecture. The conjecture implies that H(A) ≤ n− βs. Hence
|R|
22n ≤ 2−βs.
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We now want to move from |R| being small under the uniform distribution to R being
small under ν. We know that ν(R ∩ F−1(1)) ≤ 4εν(R) < ν(R)/2, so ν(R ∩ F−1(0)) ≥ ν(R)/2.
We also know from the definition of ν that

ν(R ∩ F−1(0)) = |R ∩ F
−1(0)|

2|F−1(0)| ≤
|R|

2 · 22n ·
22n

|F−1(0)| ≤ 2−βs−1 · 1
1− γ .

So ν(R) ≤ 2ν(R ∩ F−1(0)) ≤ 2−βs−1−log(1−γ). Hence the cost of the protocol is at least
βs+ log(1− γ)− 3.

This concludes the proof with α = 1
2 . We now explain how to modify the proof assuming

the conjecture were true for other values of α. Here we revert to ε < (1−α)2

4
m−2kh

8m (1− γ). The
proof would go through as it does above, analyzing a rectangle R = A×B.

• We would find more than 2kh subspaces V such that Pr[AV = BV ] < (1−α)2

4
|SV |
22n as is

done in the above proof.

• We would then set S = {y′ | BV (y′) ≥ 1−α
2·2codim(V ) }. This would mean that AV (S) ≤ 1−α

2
and BV (S) ≥ 1− 1−α

2 . Hence ‖AV −BV ‖1 ≥ 2α, and one of A or B (wlog, A) satisfies
‖AV − U2codim(V )‖1 ≥ α for at least kh subspaces from the dual subspace design.

• The proof would continue as it does above, using the conjecture to conclude that the
cost of the protocol would be at least βs+ log(1− γ)− 3, which is Ω(s) for constant γ.

Given this lower bound, we would want to apply it to get a merely cubic gap between
randomized communication complexity and approximate rank along the lines of Theorem 5.4.1.

Corollary 5.5.4. Let V = {V1, V2, . . . , Vm} be an (n/5,m/20k)-dual subspace design with
(1) m = 200kn, (2) each subspace having dimension 2n/5 and (3) every pair of subspaces
intersecting trivially. Let F = fV ◦ XOR. Then assuming Conjecture 5.5.1,

• The 1/10-error randomized communication complexity of F is Ω(n).

• rank1/10(F ) = O(n3).

Proof. The size of F−1(1) would be at most 2n∑V ∈V |V | ≤ 2n+2n/5m = o(22n). We can then
use Theorem 5.5.3 to get a lower bound of βn/5 when ε < (1−α)2

4
m−2kh

8m
|F−1(0)|

22n , which is a
constant. Since we can use error reduction to go from error 1/10 to any small constant error
with only a constant blow-up in cost, the 1/10-error randomized communication complexity is
also Ω(n).

The ε-approximate rank of f ◦ XOR is known to be at most the ε-approximate sparsity of
f . As analyzed in Theorem 5.4.1,

∥∥∥f̂V∥∥∥1
≤ 2m and spar1/10(fV) ≤ O(m2n) = O(n3) and hence

rank1/10(F ) ≤ O(n3).



112 CHAPTER 5. EXTENSIONS BASED ON SINK: SUBSPACE DESIGNS

The existence of a dual subspace design as required in the previous corollary follows by
changing Theorem 5.4.1 to set m = 200kn. The proof of the modified statement is syntactically
identical to the proof of the original statement.



Chapter 6

Quantum First-Order Convex
Optimization

This work was done in collaboration with Ankit Garg, Robin Kothari and Praneeth
Netrapalli. It is to appear at ITCS ‘21. Currently a preprint is available online. [GKNS20]

Section 6.5 in this chapter does not appear in any publication.

Recall that in the introduction we defined the measure CM(n, ε) = minA∈AlgM,n,ε
cost(A)

where M∈ {det, rand, quantum} and

AlgM,n,ε ={A is an M query algorithm making function value and subgradient queries |

∀ convex, 1-Lipschitz f : Rn → R, any subgradient oracle for f ,

A outputs an ε-optimal point of f within the unit ball}.

In this chapter we mainly show lower bounds on Cquantum(n, ε). There are also some lower
bounds on Crand(n, ε) that are included for their simplicity and the fact that they are tight up
to constant factors in a larger regime than seems to be previously proven in the literature. The
most impactful theorem is perhaps that the classical gradient descent algorithm is optimal
among quantum algorithms as well.

Before we get to the lower bounds we first discuss the task of convex optimization and
why we only care about optimizing 1-Lipschitz functions in the unit ball.

6.1 A bit about convex optimization and gradient descent

Let’s start with the unconstrained convex minimization problem for a convex function f :
Rn → R. Here we want to find an x ∈ Rn that’s ε-close to minimizing the function f . More

113
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precisely, if we let x∗ := arg minx∈Rn f(x), then our goal is to find any x ∈ Rn such that
f(x)− f(x∗) ≤ ε.

To obtain algorithms that are very general, this problem is often studied in the setting
of black-box optimization. Here we do not assume any particular structure of the function f

(e.g., that f is a low-degree polynomial), and only assume that we have some efficient method
of computing f by an algorithm or circuit. In other words, we view f as a black box.

If we only had access to a black-box computing f , this would be zeroth-order optimization.
In first-order optimization, we additionally assume we can also compute the gradient of f , or
more precisely, since the gradient may not exist, we assume we can compute some subgradient
of f . We call this oracle the first-order oracle and denote it by FO(f). When queried at any
point x ∈ Rn, it returns some vector gx ∈ Rn that satisfies for all y ∈ Rn,

f(y) ≥ f(x) + 〈gx, y − x〉 . (6.1)

In this work we consider arbitrary convex functions that are not necessarily smooth,1 and so
we cannot assume that the gradient exists. Our goal is to solve the function minimization
problem while minimizing the number of calls or queries to the black boxes for f and some
subgradient of f .

One might wonder why we consider queries to f and the subgradient of f to cost the
same. This assumption is justified in many practical situations because of the cheap gradient
principle [GW08], which says that “the cost to evaluate the gradient ∇f is bounded above
by a small constant times the cost to evaluate the function itself.” This provably holds in
many models of computation; E.g., for arithmetic circuits over + and ×, it can be proved that
the complexity of computing the gradient is at most 5 times the complexity of computing
f [BS83]. The conversion of source code computing f to code computing ∇f can often be
done automatically in many programming languages, and such methods are called automatic
differentiation or algorithmic differentiation [GW08]. These same principles essentially carry
over to the computation of subgradients [KL18]. In the quantum setting, there is additional
motivation to assume that a function and its gradient cost roughly the same since we can
obtain the gradient (or a subgradient) of a function from a black-box computing the function,
as shown in a sequence of papers that make increasingly weaker assumptions on the function
oracle [Jor05, GAW19, CCLW20, vAGGdW20].

Now that we have black-box access to f and FO(f), we also need a starting point x0 ∈ Rn

to begin our search for a minimum. We require this to be an input, and the complexity will
depend on how close this is to x∗, since otherwise the interesting portion of the function where
the minimum is achieved might be hiding in some small corner of Rn that we cannot efficiently
locate with only black-box access. Since we can easily shift the function by a fixed vector,

1In the optimization literature, a smooth function is a function that is differentiable everywhere in its domain,
so the gradient is well defined, and whose gradient has bounded Lipschitz constant.
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without loss of generality we assume x0 = ~0 is the origin. Let the distance between x0 = ~0
and x∗ be R := ‖x∗‖.2 For convenience, we will assume that R is part of the input as well,
although this can be relaxed by binary searching for the correct value of R.

Finally, it is also reasonable that the complexity of our algorithms depend on how quickly
f can change, since the value of f at some point only constrains its values at nearby points if
the function does not change too rapidly. Let G be an upper bound on the Lipschitz constant
of f , meaning that for any two points x, y, ‖f(x)− f(y)‖ ≤ G‖x− y‖. We assume G is part
of the input as well.

We are now ready to formally define the first-order convex minimization problem in the
black-box setting. We use B(x,R) := {y : ‖x− y‖ ≤ R} to denote an `2-ball of radius R
around x.

Problem 6.1.1 (First-order convex minimization). Let f : Rn → R have Lipschitz constant
at most G on B(~0, R), and let

x∗ := arg min
x∈B(~0,R)

f(x). (6.2)

Then given n, G, R, and ε > 0, the goal is to output a solution x ∈ B(~0, R) such that
f(x)− f(x∗) ≤ ε while minimizing the number of queries to f and FO(f).

For simplicity, we assume that these oracles output real numbers to arbitrarily many bits
of precision. Note that we allow algorithms to query the function and gradient oracles at any
point in Rn even though the domain we are minimizing over is B(~0, R). Since the main results
of this section are lower bounds, these only make our results stronger.

Although the problem seems to involve 4 parameters, the parameters G, R, and ε are not
independent since we can rescale the input and output spaces of f and assume G = 1 and R = 1
without loss of generality. Given an f with Lipschitz constant G, being optimized in a ball of
radius R, and with optimization accuracy ε, we can equivalently minimize f̂(x) := 1

GRf (Rx)
over the unit ball with optimization accuracy of ε

GR . Hence the complexity is really only a
function of n and GR/ε.

6.1.1 Classical algorithms for first-order convex minimization

Gradient descent, or in this case subgradient descent, is a simple algorithm that starts from a
point x0 and takes a small step (governed by a step size η) in the opposite direction of the
subgradient returned at x0. Intuitively this brings us closer to the minimum since we are
stepping in the direction where f decreases the most.

We can now describe the performance of subgradient descent for Problem 6.1.1. Since this
is a constrained optimization problem, we use the projected subgradient descent algorithm,
which is subgradient descent with the added step of projecting the current vector back onto
the ball B(~0, R) after every step.

2If x∗ is not unique, we can let R be the distance between x0 and the closest x∗ to it.
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Theorem 6.1.2 (Complexity of projected subgradient descent). The projected subgradient
descent algorithm solves Problem 6.1.1 using O((GR/ε)2) queries to f and FO(f).

Observe that the query complexity of this algorithm, i.e. the number of queries made by
the algorithm, is independent of n.3 This is quite surprising at first and partly explains why
gradient descent and its variants are popular in high-dimensional applications. More generally,
we call such algorithms dimension-independent algorithms.

There also exist dimension-dependent algorithms for Problem 6.1.1 that work well when
n is small. For example, the center of gravity method [Bub15] solves this problem with
O(n log(GR/ε)) queries, which is very reasonable when n is small (and the algorithm is very
efficient in terms of ε). In this work we focus on dimension-independent algorithms and assume
that n is polynomially larger than the other parameters in the problem.

When n is large, we cannot improve over projected subgradient descent (Theorem 6.1.2)
using any deterministic or randomized algorithm. We reprove the (well known) optimality of
this algorithm among deterministic and randomized algorithms. This result is presented in
Section 6.3.

Theorem 6.1.3 (Randomized lower bound). For any G, R, and ε, there exists a family of
convex functions f : Rn → R with n = O((GR/ε)2), with Lipschitz constant at most G on
B(~0, R), such that any classical (deterministic or bounded-error randomized) algorithm that
solves Problem 6.1.1 on this function family must make Ω((GR/ε)2) queries to f or FO(f) in
the worst case.

This lower bound on query complexity has been shown in several prior works [NY83, WS17,
BJL+19], but we believe our proof is simpler and the dimension n required in our proof seems
to be smaller than that in prior works. Note that while several expositions of gradient descent
prove the lower bound for deterministic algorithms, very few sources establish a lower bound
against randomized algorithms.

Our lower bound uses the following hard family of functions: For any z ∈ {−1,+1}n, let
fz(x1, . . . , xn) = maxi∈[n] zixi,4 where n = O(1/ε2). These functions are convex with Lipschitz
constant 1. We show that finding an ε-approximate minimum within B(~0, 1) requires Ω(n)
queries to the oracles. We establish the lower bound by showing that with high probability,
every query of a randomized algorithm only reveals O(1) bits of information about the string
z, but an ε-approximate solution to this problem allows us to reconstruct the string z, which
has n bits of information.

3Of course, the time complexity of implementing this algorithm will be at least linear in n since each query
to either oracle requires us to manipulate a vector of length n.

4We use [n] to denote the set of positive integers less than or equal to n, i.e., [n] := {1, . . . , n}.
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6.1.2 Quantum algorithms for first-order convex minimization

We now turn to quantum algorithms for solving Problem 6.1.1. In the quantum setting, we
have quantum analogues of these oracles. There is a straightforward generalization of any
oracle to the quantum setting, which makes the classical oracle reversible and then allows
queries in superposition to this oracle. This quantum generalization of the oracle is justified
by the fact that if we had a classical circuit or algorithm computing a function f , then it is
possible in a completely black-box manner to construct the quantum oracle corresponding to
f , and this oracle would then support superposition queries. We discuss quantum oracles in
more detail in Section 6.4, but for now it is sufficient to consider them as computing the same
functions as the classical oracles, except that they can additionally be queried in superposition.

At first, it might seem that since gradient descent is a sequential, adaptive algorithm where
each step depends on the previous one, there is little hope of quantum algorithms outperforming
gradient descent. On the other hand, consider the hard family of functions described above
that witnesses the classical randomized lower bound in Theorem 6.1.3. While this is hard for
classical algorithms, we show in Section 6.3.1 that there is a quantum algorithm that solves
the problem on this family obtaining a quadratic speedup over any classical algorithm (and in
particular, over gradient descent).

Theorem 6.1.4 (Quantum algorithm for classically hard function family). There is a quantum
algorithm that solves Problem 6.1.1 on the class of functions that appear in the classical lower
bound of Theorem 6.1.3 using O(GR/ε) queries to the oracle for f .

Notably, unlike most quadratic speedups in quantum computing, the source of this quadratic
speedup is not Grover’s algorithm or amplitude amplification. Theorem 6.1.4 uses Belovs’
quantum algorithm for learning symmetric juntas, which is constructed by exhibiting a feasible
solution to the dual semidefinite program of the negative-weights adversary bound [Bel14].

Now that we have shown a quadratic quantum speedup on a family of instances known to
be hard for classical algorithms, there is some hope that quantum algorithms may provide
some speedup for the general first-order convex minimization problem. Alas, our next result
(established in Section 6.4), which is our main result, shows that this is not the case, and
quantum algorithms cannot in general yield a speedup over classical algorithms for first-order
convex minimization.

Theorem 6.1.5 (Quantum lower bound). For any G, R, and ε, there exists a family of
convex functions f : Rn → R with n = Õ((GR/ε)4), with Lipschitz constant at most G on
B(~0, R), such that any quantum algorithm that solves Problem 6.1.1 with high probability on
this function family must make Ω((GR/ε)2) queries to f or FO(f) in the worst case.

Our lower bound uses ideas from the lower bound against parallel randomized algorithms
recently established by Bubeck, Jiang, Lee, Li, and Sidford [BJL+19].
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At a high level, the hard family of functions used in the randomized lower bound does
not work for quantum algorithms because although classical algorithms can only learn O(1)
bits of information per query, quantum algorithms can make queries in superposition and
learn a little information about many bits simultaneously. We remedy this by choosing a
new family of functions in which with high probability, no matter what query the quantum
algorithm makes, the oracle’s response is essentially the same. This allows us to control what
the quantum algorithm learns per query, but now the instance is more complicated and the
quantum algorithm learns O(n) bits of information per query. Since the final output of the
algorithm is a vector in Rn, we cannot use the argument used before that simply compared the
information learned per query to the total information that needs to be learned. Instead we
use the venerable hybrid argument [BBBV97] to control what the quantum algorithm learns
and show that it cannot find an ε-approximate solution to the minimization problem.

6.1.3 Related work

Classically, there is a long history of the study of oracle complexity (also known as black-box
complexity or query complexity) for deterministic and randomized algorithms for non-smooth
and smooth convex optimization. The setting considered in this paper, first-order convex
optimization, where the algorithm has query access to the function value and the gradient,
is very well studied. This topic is too vast to survey here, but we refer the reader to
[NY83, Nes04, Nes18, Bub15] for more information about upper and lower bounds that can
be shown in this setting.

There also has been work in the classical parallel setting, where in each round the algorithm
is allowed to query polynomially many points and the goal is to minimize the number of rounds
[Nem94, BS18, DG19, BJL+19]. Our work is most closely related to this setting and borrows
many ideas from these works. Although quantum algorithms and parallel classical algorithms
are incomparable in power, the constructions used to thwart parallel classical algorithms in
these papers also help with showing quantum lower bounds.

In the quantum setting, there has been some work on convex optimization in the oracle
model. There is also work on quantum gradient descent not in the oracle model. For example,
one situation studied is where the dimension n of the optimization space is very large and
the vectors are encoded in quantum states of dimension logn. See [RSW+19, KP20] and
the references therein for more information. Another setting is the work on semidefinite
programming, an important special case of convex optimization, but these algorithms exploit
the specific structure of semidefinite programs [BS17, vAGGdW17, BKL+19, vAG19] and are
not directly related to our work.

While in the classical setting, in general, a function value oracle is weaker than a gradient
oracle, this is not the case in the quantum setting. Given a function value oracle, one can
get a gradient oracle quite efficiently (with an Õ(1) overhead) [Jor05, GAW19, vAGGdW20,
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CCLW20]. A similar result also holds for simulating a separation oracle given a membership
oracle for convex bodies [vAGGdW20, CCLW20]. As discussed before, our focus in this paper
is to see if quantum algorithms can outperform classical algorithms when given a function
oracle and gradient oracle since in many relevant settings, gradient computation is cheap in
the classical case as well.

The most related works are the papers by Chakrabarti, Childs, Li, and Wu [CCLW20]
and van Apeldoorn, Gilyén, Gribling, and de Wolf [vAGGdW20]. These papers establish
very similar results so we cover them together. These papers study the problem of black-
box convex optimization, and their results are phrased in the slightly different language of
membership and separation oracles, but this is not the main difference between their work and
our work. Indeed, it is possible to recast our problem in their setting (see the discussion in the
introduction in [vAGGdW20] for how to do this). The main difference is that their algorithms
have complexities that depend on n, whereas we’re working in the parameter regime where n
is large and so we seek algorithms that are independent of n.

Specifically, [CCLW20] and [vAGGdW20] consider the problem of minimizing a linear
function over a convex body given via a membership or separation oracle. A membership oracle
for a convex body tells us whether a given point x is in the convex body and a separation oracle
in addition when x is not in the body outputs a hyperplane that separates x from the convex
body. Classically, the problem of outputting an ε-approximate solution can be solved with
O(n2 polylog(·)) queries to a membership oracle, where we are suppressing polylogarithmic
dependence on several parameters (including ε). These two papers show a quantum algorithm
that makes only O(n polylog(·)) membership queries. The key technical component of this
is a construction of a separation oracle from a membership oracle with only polylogarithmic
overhead. To do this, they first show how to obtain an approximate subgradient oracle from a
function oracle with only polylogarithmic overhead.

There are also several lower bounds shown in these papers. In [vAGGdW20], the authors
prove that quantum algorithms do not give any advantage over classical algorithms in the
setting where we are not given a point inside the convex body to start with. This setting is not
directly comparable to our setting, as far as we are aware. In the setting where we do know a
point inside the convex body, which is very similar to our setting, [vAGGdW20, CCLW20] prove
a lower bound of Ω(

√
n), which is quadratically worse than their algorithm. While, in general,

their results are incomparable to our results, one specific comparison to our results is that
[CCLW20, Theorem 3.3] essentially shows a Ω̃(min{GR/ε,

√
n}) lower bound on the number

of oracle calls to a function value oracle for the setting in Problem 6.1.1.5 Note that this is
quadratically worse than our tight lower bound (Theorem 6.1.5) in the dimension-independent
setting (i.e., when the dimension n is large compared to GR/ε).

5This is equivalent to our setting, where we have a function value and gradient oracle, due to their results.
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6.2 First-Order Convex Optimization Preliminaries

Recall that the subgradient of a function f : Rn → R at a point x ∈ Rn is any vector gx ∈ Rn

such that for all y ∈ Rn, 〈gx, y − x〉 ≤ f(y) − f(x). If f is differentiable at x, then the
subgradient is unique and is equal to the gradient of f at x, defined as

∇f(x) :=
(
∂f(x)
∂x1

, . . . ,
∂f(x)
∂xn

)
. (6.3)

The Lipschitz constant of the function f is defined as the minimumG such that f(x)−f(y) ≤
G‖x− y‖ for all x, y. It is easy to see that the maximum norm of a subgradient of f , the
maximum being over all x and over all its subgradients, is equal to the Lipschitz constant.
Here we state some other useful properties about subgradients that are easy to verify. (See
[Nes04, Section 3.1.5].)

• The subgradients of a function f at a point x form a convex set.

• For a linear function f(x) = 〈g, x〉 + c, the subgradient at any point is unique and is
equal to g.

• For the function f(x) = ‖x‖, the subgradient at a point x 6= ~0 is unique and is equal to
x/‖x‖. The subgradients of f at ~0 are the vectors of norm at most 1.

• For a function f(x) = maxi{fi(x)} with each fi being convex, and a point x and index
j such that f(x) = fj(x), the subgradients of fj at x are valid subgradients of f at x.

• For functions f and f ′ with subgradients g and g′ at x, the vector a · g + b · g′ is a valid
subgradient of a · f + b · f ′ at x.

Before we move on to the lower bounds, let us see the upper bound, that the deterministic
query complexity of Problem 6.1.1 is O((GR/ε)2), matching the (randomized) lower bound of
Theorem 6.1.3. In particular, we describe how the well-known gradient descent algorithm, or
more precisely a variant known as the projected subgradient descent algorithm, achieves this
upper bound. We now restate Theorem 6.1.2 for convenience:

Theorem 6.1.2 (Complexity of projected subgradient descent). The projected subgradient
descent algorithm solves Problem 6.1.1 using O((GR/ε)2) queries to f and FO(f).

Proof. Without loss of generality we assume G = R = 1. The projected subgradient descent
algorithm is easy to describe. We start by setting the initial vector x0 = ~0. The algorithm
then computes xt+1 from xt using the formula

xt+1 = PK(xt − η · gxt), (6.4)
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where η > 0 is the step size, a parameter of the algorithm that we must choose, and PK is the
projector onto B(~0, 1). After T steps, the algorithm outputs x̂T := 1

T

∑T−1
t=0 xt. To obtain the

claimed upper bound we set the step size η = ε.
Now we claim that for any T ≥ 1/ε2, the output x̂T satisfies:

f(x̂T )− f(x∗) ≤ ε. (6.5)

We prove this using the potential function ‖xt − x∗‖2. We have

‖xt+1 − x∗‖2 = ‖PK(xt − ηgxt)− x∗‖2 ≤ ‖xt − ηgxt − x∗‖2 (6.6)

= ‖xt − x∗‖2 − 2η 〈gxt , xt − x∗〉+ η2‖gxt‖2, (6.7)

where the inequality uses the fact that projecting a vector outside K to K can only reduce its
distance to a point in K. We then use the Lipschitz condition (‖gxt‖2 ≤ 1) and the definition
of the subgradient in eq. (6.1) to get

‖xt+1 − x∗‖2 ≤ ‖xt − x∗‖2 − 2η (f(xt)− f(x∗)) + η2, or (6.8)

f(xt)− f(x∗) ≤ ‖xt − x
∗‖2 − ‖xt+1 − x∗‖2

2η + η

2 . (6.9)

Summing up the above inequality for each t from 0 to T − 1, we note that the RHS telescopes
to give us(

1
T

T−1∑
t=0

f(xt)
)
− f(x∗) ≤ ‖x0 − x∗‖2 − ‖xT − x∗‖2

2ηT + η

2 ≤
1

2ηT + η

2 ≤ ε, (6.10)

where the second inequality used the fact that ‖x0 − x∗‖ = ‖x∗‖ ≤ R = 1. By convexity of f ,
f(x̂T ) ≤ 1

T

∑T−1
n=0 f(xt), which proves the result.

Note that although we stated and proved this for K = B(~0, R), the upper bound on the
number of queries made to the oracles holds for any K that is contained in B(~0, R). However,
if we wanted to implement this algorithm, then the time complexity would depend on how
hard it is to implement the operator PK, which projects onto the set K.

6.3 Randomized Lower Bound

In this section, we prove a lower bound for randomized first-order methods for non-smooth
convex optimization, restated here for convenience:

Theorem 6.1.3 (Randomized lower bound). For any G, R, and ε, there exists a family of
convex functions f : Rn → R with n = O((GR/ε)2), with Lipschitz constant at most G on
B(~0, R), such that any classical (deterministic or bounded-error randomized) algorithm that
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solves Problem 6.1.1 on this function family must make Ω((GR/ε)2) queries to f or FO(f) in
the worst case.

This lower bound is known and multiple proofs can be found in the literature [NY83, WS17].
Our proof is elementary and we did not find it written anywhere, although it is conceptually
similar to the one in [NY83], and so we include it here for completeness. Our proof also has
the dimension n = Θ(1/ε2), without any log factors, which is the best possible. As far as we
are aware, the previous proofs required larger dimension. As we will see later, the family of
instances used is also interesting because we can get a quantum speedup for it, because of
which we have to look at other instances to prove the quantum lower bound.

We can now define the family of convex functions used in the lower bound. For any ε > 0,
we set n = b.9/ε2c and look at the following class of functions.

Definition 6.3.1. Let z ∈ {−1, 1}n. Let fz : Rn → R be defined as

fz(x1, . . . , xn) = max
i∈[n]

zixi. (6.11)

Each such function is convex since it is a maximum of convex functions [Nes04, Theorem
3.1.5]. Note that if fz(x) = zixi for some i ∈ [n], then ziei is a subgradient of fz at x (since
fz(x) + 〈ziei, y − x〉 = ziyi ≤ fz(y)). Hence the function is 1-Lipschitz. We can also see that
within the unit ball the function is minimized at the point

x∗ = −1√
n

∑
i∈[n]

ziei, (6.12)

and fz(x∗) = −1/
√
n. Clearly given x∗ we can recover z from it. We now show z can even be

recovered from an ε-approximate minimum of fz.

Lemma 6.3.2. Let x be such that fz(x)− fz(x∗) ≤ ε. Then we can recover z ∈ {0, 1}n from
x ∈ Rn.

Proof. Let sx ∈ {−1,+1}n be the vector with (sx)i = sign(xi), where sign(a) = +1 if a ≥ 0
and sign(a) = −1 otherwise. We claim that z = −sx. Toward a contradiction, if (sx)i 6= −zi
for some i, then (sx)i = zi, since these only take values in {−1,+1}. In this case, xi and zi

agree in sign, and hence fz(x) ≥ zixi ≥ 0. Since ε < 1/
√
n (because of our choice of n above)

the point x cannot satisfy fz(x)− fz(x∗) ≤ ε.

Since this function is not differentiable everywhere, for our lower bound we need to specify
the behavior of the subgradient oracle on all inputs. The function is not differentiable only
at x ∈ Rn where the maximum is achieved at multiple indices. In this case, the subgradient
oracle responds as if the maximum was achieved on the smallest such index i, i.e., it responds
with ziei. Note that for this function, querying the subgradient oracle allows us to simulate
a call to the function oracle as well, since the response is ziei for the index i that achieves
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the maximum, so the function evaluates to zixi at that point, which we can compute since
we know x. So we can assume without loss of generality that an algorithm only queries the
subgradient oracle.

Now that the problem is fully specified, we will show that any randomized optimization
algorithm using the function oracle and this subgradient oracle will require Ω(n) queries in
order to solve Problem 6.1.1 with a constant probability of success.

The following will be the crux of the lower bound. Let I ⊆ [n]. We say a distribution D
over {−1, 1}n is I-fixed if for z ∼ D the random variable zI is fixed and zI is uniform over
{−1, 1}I .

Lemma 6.3.3. Let z be distributed according to an I-fixed distribution. Let x be an arbitrary
query made to the fz oracle. After one query to the subgradient oracles, the conditional
distribution on z given the answer is I ′-fixed with I ⊆ I ′ and E[|I ′|] ≤ |I|+ 2.

Proof. Let x be the algorithm’s query. The index i that achieves the maximum in the definition
of fz(x) can be computed as follows. Let i1, . . . , in be the ordering of the indices 1 to n in
decreasing order of |xi|, with ties broken with the natural ordering on integers. The oracle
outputs fz(x) = zijxij and chooses the subgradient zijeij where j is the smallest index for
which xij agrees in sign with zij , and if no such index exists, then j = n.

Since fz(x) can be computed given the subgradient zijeij , the only information obtained
from a query is the prefix {zik}k≤j . In other words, if the subgradient oracle responds with
zijeij , then we have learned that for all indices k ≤ j, we must have sign(xi) = −zi, but we
have not learned any more since the oracle’s output does not depend on the bits of z with
index ik with k > j. After this query, we know the bits zik with k ≤ j, but conditioned on
these, the distribution on the remaining bits of z continues to be uniform. This is an I ′-fixed
distribution with I ′ = I ∪ {ik}k≤j . Intuitively, I ′ cannot be much larger than I since an index
ik is part of this set only if the algorithm correctly guessed the sign of zik for this index and
all indices with a smaller value of k. Since the initial distribution z was uniformly at random
outside of I and x is fixed, the probability of correctly guessing the first index (according to
the ij ordering) that was not fixed is 1/2, the probability of guessing the first two is 1/4 and
so on. Thus the expected number of new entries fixed by one query is ∑n\|I|

k=1 k · 1
2k ≤ 2.

We can use this to establish the final claim.

Lemma 6.3.4. Let z be sampled uniformly at random from {−1, 1}n. If a randomized
algorithm A outputs an x with fz(x)− fz(x∗) ≤ ε with probability at least 2/3, then its query
complexity is at least n/3− 1.

Proof. When A outputs a point x, we will require it to also query the oracle at x to see if it
is indeed ε-optimal. This can increase its query complexity by at most one. Let the query
complexity of this modified A be t. Whenever A does output an ε-optimal point, Lemma 6.3.2
implies that the conditional distribution on z is [n]-fixed. For each i ∈ [0, . . . , t], let Ii be the
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random variable such that the distribution on z after i queries of A is Ii-fixed (Lemma 6.3.3
implies that after any sequence of queries it will be an I-fixed distribution for some I). Since
z is sampled uniformly at random from {−1, 1}n, I0 = ∅. And since we want the algorithm to
succeed with probability at least 2/3, E[|It|] ≥ 2n/3.

However, |It| = ∑t
i=1|Ii| − |Ii−1|, and it is a simple consequence of Lemma 6.3.3 that

E[|Ii| − |Ii−1|] ≤ 2 for all i. So by the linearity of expectation, E[|It|] ≤ 2t and hence
t ≥ n/3.

This proves a lower bound of Ω(1/ε2) on the randomized query complexity of first-order
convex minimization for a function with G = R = 1. As noted earlier, this is without loss of
generality and implies the more general bound in Theorem 6.1.3.

6.3.1 Quantum speedup

In this section we prove Theorem 6.1.4, restated for convenience:

Theorem 6.1.4 (Quantum algorithm for classically hard function family). There is a quantum
algorithm that solves Problem 6.1.1 on the class of functions that appear in the classical lower
bound of Theorem 6.1.3 using O(GR/ε) queries to the oracle for f .

The quantum speedup for the above class of functions relies on Belovs’ quantum algorithm
for Combinatorial Group Testing [Bel14]. Belovs showed that given access to an oracle making
OR queries to an n-bit string, the n-bit string can be learned in O(

√
n) quantum queries. More

formally, Belovs showed the following [Bel14].

Theorem 6.3.5. Let x ∈ {0, 1}n and Ox be the unitary that for every S ⊆ [n] and b ∈ {0, 1},
satisfies Ox|S〉|b〉 = |S〉|b⊕ ORx(S)〉, where ORx(S) = 1 if there is an i ∈ S such that xi = 1,
and ORx(S) = 0 otherwise. Then we can learn x with high probability with O(

√
n) quantum

queries to the oracle Ox.

We can now prove Theorem 6.1.4.

Proof of Theorem 6.1.4. In our optimization problem, making the query x = 1√
n

∑
i∈S ei to

the function oracle returns fz(x) = 1√
n

if there is an i ∈ S such that zi = 1. If there is no such
i ∈ S, then it will output fz(x) = 0, unless S = n, in which case it will output − 1√

n
.

Hence a function value oracle for fz can be used to make OR queries to the string z, since
it outputs 1 if there is an i ∈ S such that zi = 1 and outputs 0 (or −1/

√
n) otherwise. Using

Belovs’ algorithm, with O(
√
n) such queries, we can learn the locations of all the 1s in z, which

allows us to learn z completely.

This quantum algorithm is also essentially optimal for this problem and it is not hard to
show an Ω(

√
n/ logn) lower bound for quantum algorithms. A similar lower bound is shown

in [CCLW20, Theorem 3.3], and we sketch a simpler proof of the claim here.
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As discussed in the classical lower bound, what the subgradient oracle allows us to do is
have a non-standard query to the unknown string z ∈ {−1, 1}n. In this non-standard query,
we get to order the bits of z however we like, and then submit a string in {−1, 1}n and ask for
the first index (according to our ordering) where our string agrees with z. As we showed in
the classical lower bound, if we solve the optimization problem, then we also learn z.

So we are left with answering the question of how hard it is to learn z given these non-
standard queries to z. Given standard queries to z, where we can only query one bit of our
choice, it is well known that we need Ω(n) queries to learn z. But our non-standard query is
easy to implement using Grover’s algorithm with only O(

√
n) standard queries, since all we

have to do is find the first bit of z according to a known ordering where the queried string and
z agree. If the problem of learning z with these non-standard queries used T non-standard
queries, then we could implement the non-standard queries ourselves with cost O(

√
n) and

compose the two algorithms to obtain an algorithm for learning z using standard queries
with complexity O(T

√
n). (Thanks to the properties of the composition of bounded-error

quantum query complexity [Rei11].) Since this problem has a lower bound of Ω(n), we get
T = Ω(

√
n/ logn).

6.4 Quantum lower bound

In this section, we show that for any ε, there exists a 1-Lipschitz family of functions such that
any quantum algorithm that solves Problem 6.1.1 on the unit ball must make 1

100ε2 queries.
In other words, there is no quantum first-order convex optimization algorithm that always
outperforms the classical gradient descent algorithm described in Theorem 6.1.2. The function
we will use was introduced by Nemirovsky and Yudin [NY83]. To show the quantum lower
bound, we adapt to the quantum setting the lower bound strategy of Bubeck et al. [BJL+19]
in the model of parallel algorithms.

We restate the main result proved in this section for convenience:

Theorem 6.1.5 (Quantum lower bound). For any G, R, and ε, there exists a family of
convex functions f : Rn → R with n = Õ((GR/ε)4), with Lipschitz constant at most G on
B(~0, R), such that any quantum algorithm that solves Problem 6.1.1 with high probability on
this function family must make Ω((GR/ε)2) queries to f or FO(f) in the worst case.

We start by first proving a qualitatively similar, but simpler result with a larger value of
n = Õ((GR/ε)6) in Section 6.4.4. If we only care about the optimality of gradient descent
in the dimension-independent setting, this lower bound is sufficient. But if we also want to
understand the trade-off between dimension-independent and dimension-dependent algorithms,
then we would like to show this lower bound with as small a value of n as we can. In
Section 6.4.5, we improve the lower bound to achieve the value of n stated in this theorem.
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6.4.1 Function family and basic properties

We start by defining the family of functions F = {f : Rn → R} that we use. The function
family F depends on the dimension n and two other parameters k and γ. Since the function
family we choose depends on ε, the parameters n, k, and γ will be functions of ε. Our choice
of n, k, and γ will become clear later, but for now we simply choose them as follows. Let

k := 1
100ε2 =⇒ ε = 1

10
√
k

and γ := 1
10k3/2 = 100ε3. (6.13)

We choose n such that it satisfies

γ ≥ 8
√

logn
n

=⇒ n := O

( log(1/ε)
ε6

)
= Õ

( 1
ε6

)
. (6.14)

The discussion before Lemma 6.4.2 explains the choice of k and the discussion after Lemma 6.4.3
explains the choice of γ. For the dimension n, see the discussion at the beginning of Section 6.4.2.

We now define the function family for these specific choices of n, k, and γ.

Definition 6.4.1 (Hard function family). Let V = {(v1, . . . , vk) | ∀i, j,∈ [k], 〈vi, vj〉 = δij} be
the set of all k-tuples of orthonormal vectors in Rn. Let the family of functions F = {fV }V ∈V
be defined as

f(v1,v2,...,vk)(x) := max
i∈[k]

{
g

(i)
V (x)

}
, where g(i)

V (x) := 〈vi, x〉+ (k − i)γ‖x‖. (6.15)

We will show that any quantum algorithm that solves Problem 6.1.1 on the functions in
this family must make k queries. As we will prove, informally what happens is each query of
the quantum algorithm to the gradient oracle only reveals a single direction vi to the algorithm.
In fact, with very high probability the vectors are revealed in order, so that the algorithm first
learns v1, then v2, and so on. As we will show in Lemma 6.4.3, any ε-optimal solution must
overlap significantly with all vi, and thus any quantum algorithm must make k queries. Since
we want to show an Ω(1/ε2) bound, we choose k to be a small multiple of 1/ε2, which explains
our choice for k in eq. (6.13).

We now establish some basic properties of these functions.

Lemma 6.4.2 (Properties of fV ). For any V ∈ V, let fV and g(i)
V be as in Definition 6.4.1.

Then fV is convex with Lipschitz constant at most 1 + kγ ≤ 2 on B(~0, 1), and

for x 6= ~0, ∇g(i)
V (x) = vi + (k − i)γx/‖x‖, and (6.16)

for x = ~0, ∂g
(i)
V (~0) = {vi + (k − i)γu | u ∈ B(~0, 1)}, and (6.17)

for any x, ∂fV (x) = ConvexHull
(
{u ∈ ∂g(i)

V (x) | g(i)
V (x) = fV (x)}

)
, (6.18)

where the convex hull of a set of vectors is the set of all convex combinations of vectors in the
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set. Lastly, for any α > 0, fV (αx) = αf(x) and ∂fV (αx) = ∂fV (x).

Proof. For all V ∈ V , fV : Rn → R is convex. This follows because linear functions and norms
are convex functions [Nes04, Example 3.1.1], and the sum or maximum of convex functions is
convex [Nes04, Theorem 3.1.5].

Let us now compute the subgradients of g(i)
V (x) = 〈vi, x〉 + (k − i)γ‖x‖. The linear

function 〈vi, x〉 is differentiable and its gradient is simply vi. The Euclidian norm ‖x‖ is
differentiable everywhere except at x = ~0. At x 6= ~0, the gradient of ‖x‖ is x/‖x‖ and
at x = 0, the set of subgradients is B(~0, 1) [Nes04, Example 3.1.5]. We also know that
∂(α1f1(x) + α2f2(x)) = α1∂f1(x) + α2∂f2(x) [Nes04, Lemma 3.1.9], which gives us the
expressions for the subgradients of g(i)

V .
For a function that is the maximum of functions g(i)

V , we know that the set of subgradients
is simply the convex hull of subgradients of those g(i)

V which achieve the maximum at the given
point x [Nes04, Lemma 3.1.10].

The Lipschitz constant of a function is the maximum norm of any subgradient of the
function. Since any vector in ∂g

(i)
V has norm 1 + kγ, and any vector in ∂fV is the convex

combination of vectors with norm at most 1 + kγ, the Lipschitz constant of fV is at most
1 + kγ ≤ 2.

Finally, it is easy to see from the definition of fV that for α > 0, fV (αx) = αf(x) since each
term in the max gets multiplied by α. For ∂fV (αx), note that this is a convex combination of
∂g

(i)
V (αx), and these do not depend on α.

For convenience we work with this family of functions with Lipschitz constant at most 2
instead of 1, which doesn’t change the asymptotic bounds since we could just divide every
function fV by 2.

The last property essentially says that querying the function or its subgradient on a scalar
multiple of a vector x gives us only as much information as querying it on x. Thus we can
assume that an algorithm only queries the oracles within the unit ball without loss of generality.

Now let us discuss the vector x∗ ∈ B(~0, 1) that minimizes fV (x) and vectors that ε-
approximately solve the minimization problem. First note that if γ were equal to 0, then
the function would simply be maxi∈[k]〈vi, x〉, which requires us to minimize the component
of x in k different directions subject to it being a unit vector. The solution to this is simply
−1√
k

∑
i vi. Now −1/

√
k = −10ε, so the overlap of x with each direction vi is a large multiple of

ε. So even an ε-approximate solution must have reasonable overlap with each of the vectors vi.
Specifically, each overlap must be at least −9ε. Now in our function fV the term γ is not 0,
but that term at most perturbs the function by kγ = ε, which again is much smaller than 10ε,
and thus even approximate solutions must have significant overlaps with all vi. We formalize
these properties below.

Lemma 6.4.3 (Properties of the minimum). For any V ∈ V, let fV : Rn → R be the function
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in Definition 6.4.1 and let x∗ := arg minx∈B(~0,1) fV (x). Then fV (x∗) ≤ −9ε. Furthermore,
any x ∈ Rn that satisfies |fV (x)− fV (x∗)| ≤ ε must satisfy for all i ∈ [k], 〈vi, x〉 ≤ −8ε.

Proof. Consider the vector y = −1√
k

∑
i∈[k] vi. This is a vector in B(~0, 1), satisfying fV (y) ≤

−1√
k

+ (k − 1)γ ≤ −1√
k

+ kγ = −10ε+ ε = −9ε, because we have 10ε = 1√
k

and kγ = 1
10
√
k

= ε.
Thus fV (x∗) ≤ fV (y) ≤ −9ε.

Now consider any vector x with |fV (x) − fV (x∗)| ≤ ε, which implies fV (x) ≤ −8ε.
If 〈vi, x〉 > −8ε for any i ∈ [k], then fV (x) ≥ 〈vi, x〉 + (k − i)γ‖x‖ > −8ε, which is a
contradiction.

This result crucially uses the relation between γ and k and because we want kγ to be a
constant factor (say 10) smaller than

√
1/k, this informs our choice of γ in eq. (6.13). Our

choice of n in eq. (6.14) will be discussed in the next section.

6.4.2 Probabilistic facts about the function family

So far all the properties we have discussed of our function family hold for any V ∈ V, but
now we want to talk about a hard distribution over such functions. Specifically we want to
talk about choosing a uniformly random (according to the Haar measure) V from the infinite
set V. It is easy to see how to sample a random V once we can sample unit vectors from a
subspace. We start by choosing v1 to be a Haar random unit vector from Rn, let v2 be a
Haar random unit vector from span(v1)⊥, and so on, until vk is a Haar random unit vector in
span(v1, v2, . . . , vk−1)⊥. In the following, to improve readability, we will use boldface to denote
random variables.

We can now discuss what determines our choice of n. By construction, the family of
functions F has the property that if the input vector x has equal inner product with all vectors
vi, then the maximum will be achieved uniquely on the first term i = 1 because the additive
term (k − i)γ‖x‖ is largest for i = 1. Now what we want to ensure is that this property
holds even when x does not have equal inner product with all vi, but x is chosen uniformly at
random from B(~0, 1). Or equivalently, we want this property to hold when x is fixed, but the
set V is chosen uniformly at random.

In either case, the inner product of x with a random unit vector v will be a random variable
with mean 0 due to symmetry. But the expected value of |〈v, x〉|2 for a random unit vector
v is 1/n, and in fact it will be tightly concentrated around 1/n. The following proposition
follows from [Bal97, Lemma 2.2].

Proposition 6.4.4. Let x ∈ B(~0, 1). Then for a random unit vector v, and all c > 0,

Pr
v

(|〈x, v〉| ≥ c) ≤ 2e−nc2/2. (6.19)

We choose γ so that it is very unlikely that the maximum is not achieved at i = 1
(probabililty polynomially small in n). From Proposition 6.4.4, we see that the probability of
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any |〈vi, x〉|2 being larger than a constant multiple of logn/n is inverse polynomially small.
So it is sufficient to take γ2 to be a large constant multiple of logn/n as in eq. (6.14).

In our lower bound we will need a slightly stronger result. We can show that if the vectors
v1, . . . , vt−1 are fixed (and hence known to the algorithm), and the remaining vectors vt, . . . , vk
are chosen uniformly at random such that the set of vectors {v1, . . . , vk} is orthonormal, then
the maximum will be achieved in the set [t] with high probability. This generalizes the previous
claim, which is the case of t = 1, where none of the vectors were fixed.

Lemma 6.4.5 (Most probable argmax). Let 1 ≤ t ≤ k be integers and {v1, . . . , vt−1} be a
set of orthonormal vectors. Let {vt, . . . , vk} be chosen uniformly at random so that the set
{v1, . . . , vk} is orthonormal. Then

∀x ∈ B(~0, 1) : Pr
vt,...,vk

(
max
i∈[k]
〈vi, x〉+ (k − i)γ‖x‖ 6= max

i∈[t]
〈vi, x〉+ (k − i)γ‖x‖

)
≤ 1
n7 . (6.20)

Proof. Let Ex denote the event whose probability we want to upper bound. Since Ex and
Eαx, for any α ∈ [0, 1], are the same event, we can assume without loss of generality that
‖x‖ = 1. If event Ex occurs, then it must hold that

max
i∈{t+1,...,k}

〈vi, x〉+ (k − i)γ > max
i∈[t]
〈vi, x〉+ (k − i)γ ≥ 〈vt, x〉+ (k − t)γ. (6.21)

We want to show that this event is very unlikely. To do so, let Fx be the event that for all
i ∈ {t, . . . , k}, 〈vi, x〉 ∈ [−γ

2 ,+
γ
2 ]. Note that if Fx occurs, then the terms in the max are in

decreasing order, and we have

〈vt, x〉+ (k − t)γ ≥ 〈vt+1, x〉+ (k − t− 1)γ ≥ · · · ≥ 〈vk−1, x〉+ γ ≥ 〈vk, x〉, (6.22)

which contradicts eq. (6.21). Thus if Ex holds then the complement of Fx, F̄x must hold,
which means Pr(Ex) ≤ Pr(F̄x). So let us show that Fx is very likely.

The event F̄x holds only if there exists an i ∈ {t, . . . , k} such that 〈vi, x〉 /∈ [−γ
2 ,+

γ
2 ]. We

can upper bound this probability for any particular i ∈ {t, . . . , k} using Proposition 6.4.4
and the fact that vi is chosen uniformly at random from an n− t+ 1-dimension ball. This
probability is at most 2e−(n−t+1)γ2/8 = 2e−(n−t+1)·8 logn

n ≤ 2 · 2−8 logn = 2/n8, with the
inequality holding because n > 4t. The probability that this happens for any i is at most
(k − t+ 1) ≤ k times this probability, by the union bound. Using the fact that 2k < n, we get
that Pr(Ex) ≤ Pr(F̄x) < 1/n7.

Finally, we show that even if we knew the vectors v1, . . . , vk−1, we cannot guess a vector x
that is an ε-approximate solution to our problem, because it won’t have enough overlap with
vk, which is unknown. In other words, for an algorithm to output an ε-optimal solution, it
essentially must know the entire set V .
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Lemma 6.4.6 (Cannot guess x∗). Let k > 0 be an integer and {v1, . . . , vk−1} be a set of
orthonormal vectors. Let vk be chosen uniformly at random from span(v1, . . . , vk−1)⊥ and let
V = (v1, . . . , vk). Then

∀x ∈ B(~0, 1) : Pr
vk

(fV (x)− fV (x∗) ≤ ε) ≤ 2e−Ω(k2). (6.23)

Proof. From Lemma 6.4.3, we know that an ε-optimal solution x must satisfy 〈vk, x〉 ≤ −8ε.
But vk is chosen uniformly at random from the space span(v1, . . . , vk−1)⊥ and any vector
x ∈ B(~0, 1) projected to that space also has length at most 1. So from Proposition 6.4.4 we
know that for any x ∈ B(~0, 1),

Pr
vk

(〈vk, x〉 ≤ −8ε) ≤ Pr
vk

(|〈vk, x〉| ≥ 8ε) ≤ 2e−32(n−k+1)ε2 ≤ 2e−Ω(k2). (6.24)

6.4.3 Quantum query model

We now formally define the quantum query model in our setting. In the usual quantum query
model the set of allowed queries is finite, whereas in our setting it is natural to allow the
quantum algorithm to query the oracles at any point x ∈ Rn. Due to Lemma 6.4.2, it is
sufficient to allow the algorithm to query any x ∈ B(~0, 1), but this is still a continuous space of
queries, and hence a query vector could be a superposition over infinitely many states. Instead
of formalizing this notion of quantum algorithms, we allow the algorithm to make discrete
queries only, but to arbitrarily high precision. The reader is encouraged to not get bogged
down by details and to think of the registers as storing the real values that they ideally should,
but in the rest of this section we define these algorithms more carefully so that all the spaces
involved are finite and well defined. This formalization is not specific to the quantum setting
and is done classically as well if we do not want to manipulate real numbers as atomic objects.

All the real numbers that appear will be represented using some b bits of precision, where
b can be chosen by the algorithm. The reader should imagine b being arbitrarily large, say
exponentially larger than all the parameters involved in the problem, so that the inaccuracy
involved by using this representation is negligible. Then the algorithm represents the input
x ∈ B(~0, 1) using b bits of precision per coordinate. The oracle’s response will also use b bits
of precision per real number. For a given choice of b, the quantum algorithm will have some
probability of success of solving the problem at hand. We then define the success probability of
quantum algorithms that make q queries by taking a supremum over all b of q-query algorithms
that solve the problem.

We can now define the oracles more precisely. Classically, the function oracle for a function
f : Rn → R would simply implement the map x 7→ f(x), where we represent each entry of
x and the output f(x) using b bits, so x ∈ {0, 1}bn and f(x) ∈ {0, 1}b. Let’s say we have a
classical circuit that implements this map using G gates, say over the gate set of AND, OR,
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and NOT gates. Then it is easy to construct, in a completely black-box way, a quantum
circuit using O(G) gates (say over the gate set of Hadamard, CNOT, and T) that performs
the unitary U |x〉|y〉 = |x〉|y ⊕ f(x)〉, for every x ∈ {0, 1}bn, and y ∈ {0, 1}b. This is why it is
standard to assume that the quantum oracle corresponding to the classical map x 7→ f(x) is a
unitary that performs U |x〉|y〉 = |x〉|y⊕ f(x)〉. We apply the same construction for the FO(f)
oracle to get the quantum analogue of the classical map x 7→ gx, where gx is some subgradient
of f at x. Lastly, for convenience we will combine both the function and subgradient oracle
into one oracle that when queried with x returns f(x) and a subgradient at x. Since our
function family is parameterized by V ∈ V, we call this oracle OV .

Let A be a quantum query algorithm that makes q queries. A is described by a sequence
of unitaries UqOV Uq−1OV Uq−2OV · · ·U1OV U0 applied to an initial state, say |0〉. We assume
that the output of A, which is a vector x, is determined by measuring the first n registers
storing real numbers using b bits.

6.4.4 Lower bound

We can now prove the quantum lower bound. Let A be a k− 1 query quantum algorithm that
solves Problem 6.1.1 on all the functions fV for V ∈ V. Due to Lemma 6.4.2, we can assume
that the algorithm only queries the oracles with vectors x ∈ B(~0, 1). We also need to describe
the behavior of the subgradient oracle on inputs where the subgradient is not unique. On
such inputs x, the subgradient is not unique because several indices i ∈ [k] simultaneously
achieve the maximum in fV (x). In this case, the subgradient will answer as if the smallest
index i in this set achieved the maximum. Now let A be described by the sequence of unitaries
Uk−1OV Uk−2OV · · ·OV U1OV U0 acting on the starting state |0〉. Let this sequence of unitaries
be called A. Then the final state of the algorithm is A|0〉.

Recall that we defined fV (x) = maxi∈[k]{g
(i)
V (x)}. Let us also define functions f (j)

V where
the maximization is only over the first j indices instead of all k indices. Specifically, let
f

(j)
V := maxi∈[j]{g

(i)
V (x)}. We previously defined the oracle OV as corresponding to the

function fV . Let O(j)
V be the oracle corresponding to the functions f (j)

V .
Now we define a sequence of unitaries starting with A0 = A as follows:

A0 := Uk−1OV Uk−2OV · · ·OV U1OV U0

A1 := Uk−1OV Uk−2OV · · ·OV U1O
(1)
V U0

A2 := Uk−1OV Uk−2OV · · ·O
(2)
V U1O

(1)
V U0 (6.25)

...

Ak−1 := Uk−1O
(k−1)
V Uk−2O

(k−2)
V · · ·O(2)

V U1O
(1)
V U0

We want to show that the algorithm A0 does not solve our problem. To do so, we will
employ the hybrid argument, in which we show that the output of the algorithm Ai and Ai+1
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is close, and thus the output of A0 and Ak−1 is close. Finally, we argue that the algorithm
Ak−1 does not solve our problem because the oracles in the algorithm do not know vk. Let us
first establish these two claims.

Lemma 6.4.7 (Ak−1 does not solve the problem). Let A be a k − 1 query algorithm and let
Ak−1 be defined as above. Let pV be the probability distribution over x ∈ B(~0, 1) obtained by
measuring the output state Ak−1|0〉. Then PrV,x∼pV (fV (x)− fV (x∗) ≤ ε) ≤ 2e−Ω(k2).

Proof. We want to show that the probability (over the random choice of V and the internal
randomness of the algorithm) that Ak−1 outputs an x that satisfies f(x)− f(x∗) ≤ ε is very
small.

Let us establish the claim for any fixed choice of v1, . . . vk−1, since if the claim holds for
any fixed choice of these vectors, then it also holds for any probability distribution over them.
For a fixed choice of vectors, this claim is just Prvk,x∼pV (fV (x)− fV (x∗) ≤ ε) ≤ 2e−Ω(k2). Now
since the algorithm Ak−1 only has oracles O(i)

V for i < k, the probability distribution pV only
depends on v1, . . . , vk−1. Since these are fixed, this is just a fixed distribution p. So we can
instead establish our claim for all x ∈ B(~0, 1), which will also establish it for any distribution.

So what we need to establish is that for any x ∈ B(~0, 1), Prvk(fV (x) − fV (x∗) ≤ ε) ≤
2e−Ω(k2), which is exactly what we showed in Lemma 6.4.6.

Lemma 6.4.8 (At and At−1 have similar outputs). Let A be a k − 1 query algorithm and let
At for t ∈ [k − 1] be the unitaries defined in eq. (6.25). Then

E
V

(
‖At|0〉 −At−1|0〉‖2

)
≤ 4
n7 . (6.26)

Proof. From the definition of the unitaries in eq. (6.25) and the unitary invariance of the
spectral norm, we see that ‖At|0〉 −At−1|0〉‖ = ‖(O(t)

V −OV )Ut−1O
(t−1)
V · · ·O(1)

V U0|0〉‖. Let
us again prove the claim for any fixed choice of vectors v1, . . . , vt−1, which will imply the
claim for any distribution over those vectors. Once we have fixed these vectors, the state
Ut−1O

(t−1)
V · · ·O(1)

V U0|0〉 is a fixed state, which we can call |ψ〉. Thus our problem reduces to
showing for all quantum states |ψ〉,

E
vt,...,vk

(
‖(O(t)

V −OV )|ψ〉‖2
)
≤ 4
n7 . (6.27)

Now we can write an arbitrary quantum state as |ψ〉 = ∑
x αx|x〉|φx〉, where x is the query

made to the oracle, and ∑x |αx|2 = 1. Thus the LHS of eq. (6.27) is equal to

E
vt,...,vk

∥∥∥∥∥∑
x

αx(O(t)
V −OV )|x〉|φx〉

∥∥∥∥∥
2
 ≤∑

x

|αx|2 E
vt,...,vk

(
‖(O(t)

V −OV )|x〉‖2
)
. (6.28)

Since |αx|2 defines a probability distribution over x, we can again upper bound the right
hand side for any x instead. Since O(t)

V and OV behave identically for some inputs x, the
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only nonzero terms are those where the oracles respond differently, which can only happen if
f

(t)
V (x) 6= fV (x). When the response is different, we can upper bound ‖(O(t)

V −OV )|x〉‖2 by 4
using the triangle inequality. Thus for any x ∈ B(~0, 1), we have

E
vt,...,vk

(
‖(O(t)

V −OV )|x〉‖2
)
≤ 4 Pr

vt,...,vk
(f (t)
V (x) 6= fV (x)) ≤ 4/n7, (6.29)

where the last inequality follows from Lemma 6.4.5.

Finally we can put these two lemmas together to prove our lower bound.

Lemma 6.4.9 (A does not solve the problem). Let A be a k − 1 query algorithm. Let pV be
the probability distribution over x ∈ B(~0, 1) obtained by measuring the output state A|0〉. Then
PrV,x∼pV (fV (x)− fV (x∗) ≤ ε) ≤ 1

poly(n) .

Proof. Let PV be the projection operator that projects a quantum state |ψ〉 onto the space
spanned by vectors |x〉 for x such that fV (x)−fV (x∗) ≤ ε. Then ‖PVA|0〉‖2 = Prx∼pV (fV (x)−
fV (x∗) ≤ ε). We know from Lemma 6.4.7 that EV

(
‖PVAk−1|0〉‖2

)
≤ 2e−Ω(k2). We prove

our upper bound on the probability by showing that it is approximately the same as
EV
(
‖PVAk−1|0〉‖2

)
.

Lemma 6.4.8 states that for all 1 ≤ t < k, EV
(
‖At|0〉 −At−1|0〉‖2

)
≤ 4

n7 . Using telescoping
sums and the Cauchy-Schwarz inequality, we see that

E
V

(
‖Ak−1|0〉 −A|0〉‖2

)
≤ E

V


 ∑
t∈[k−1]

‖At|0〉 −At−1|0〉‖

2
 (6.30)

≤ E
V

 ∑
t∈[k−1]

‖At|0〉 −At−1|0〉‖2
 ∑

t∈[k−1]
12

 ≤ 4k
n7 · k. (6.31)

For all V , |‖PVAk−1|0〉‖−‖PVA|0〉‖| ≤ ‖PVAk−1|0〉 − PVA|0〉‖ = ‖PV (Ak−1|0〉 −A|0〉)‖ ≤
‖Ak−1|0〉 −A|0〉‖.

So EV
((
‖PVAk−1|0〉‖− ‖PVA|0〉‖

)2) ≤ 4k2

n7 . By Markov’s inequality, PrV
((
‖PVAk−1|0〉‖−

‖PVA|0〉‖
)2 ≥ 1

n4
)
≤ 4k2

n3 . So it is overwhelmingly likely that ‖PVA|0〉‖ − ‖PVAk−1|0〉‖ ≤ 1
n2 ,

which implies ‖PVA|0〉‖2 − ‖PVAk−1|0〉‖2 ≤ 2
n2 since both norms are at most 1. Even

assuming that in the unlikely cases the difference is the maximum possible, we still get
EV
(
‖PVA|0〉‖2 − ‖PVAk−1|0〉‖2

)
≤ 4k2

n3 + 2
n2 .

We can now use linearity of expectation and upper bound our required probability as

Pr
V,x∼pV

(fV (x)− fV (x∗) ≤ ε) = E
V

(
‖PVA|0〉‖2

)
≤ 2e−Ω(k2) + 4k2

n3 + 2
n2 . (6.32)

Note that this establishes a statement similar to Theorem 6.1.5, except with a polynomially
larger value of n. This result is sufficient to establish the optimality of gradient descent in the
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dimension-independent setting. In the next section we quantitatively improve the lower bound
by reducing the value of n.

6.4.5 Improved lower bound using the wall function

In this section we improve the dimension dependence of the previous lower bound using the
strategy used by [BJL+19], where they introduce a function called the wall function. We now
provide a high-level overview of this strategy before getting into the details.

The previous construction required a larger dimension n because we needed to use a
large value of γ, which in turn was large because we wanted the following key property (i.e.,
Lemma 6.4.5) to hold: If you query the function fV (x) with a random vector x ∈ Rn, the
function is almost certainly maximized on the first term in the max, and the answer of the
gradient oracle is v1. To reduce the parameter n, we will use a different function in this section.
This function will be built out of the functions pV : Rn → R, where V = (v1, v2, . . . , vk) is
again a set of k orthonormal vectors:

pV (x) := max
i∈[k]
{〈vi, x〉 − iγ}, (6.33)

where γ is unspecified for now. If we only allow the algorithm to query the oracle with a
vector x with ‖x‖ = 1, this function is essentially the same as the function fV we used in the
previous section, up to an additive kγ term. Allowing the algorithm to query pV at vectors x
with ‖x‖ ≤ 1 is fine too, since our key property will still hold: Querying the gradient oracle
with a random x with norm less than 1 will still return v1 almost certainly. But if we allow
the algorithm to query with vectors x with extremely large norm, the additive term iγ will be
negligible, and the property we want (that the answer is almost certainly v1) will not hold
anymore.

The wall function construction is a way of fixing this problem. The wall function constrains
the set of points that can be queried to gain useful information about the set V . At the
beginning, when the algorithm does not know the set V , the wall function essentially forces
the algorithm to query the oracle with vectors x with small norm. If the oracle is queried with
a vector of large norm, the wall function “hides” information about the set V by outputting
an answer that (with high probability) is independent of V . More generally, if the algorithm
has learned a subset of V , and the algorithm queries the oracle with a vector x with a large
projection outside of the span of the vectors it knows, then (with high probability) the oracle’s
answer hides information about V . In this setting, querying a unit vector at random would be
inadvisable since the whole vector would be outside of the span of the vectors the algorithm
knows, and the oracle’s response will be non-informative. The useful queries will be shorter
vectors which do not trigger the wall function’s obfuscation, since any projection of a short
vector is also short. This restriction on the query vector length now allows us to choose a
smaller value of γ than in the previous construction, and hence have a smaller dimension n.
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Formal construction. We now describe the construction formally. As in the previous
section, V = (v1, . . . , vk) is a set of k orthonormal vectors in Rn. Our family of functions will
depend on several parameters (n, k, δ, and γ), which are all functions of ε, which is the single
parameter on which the function family depends.

Let us start with k. As before, we will show a lower bound of Ω(k), and so we want k to be
a small multiple of 1/ε2. Thus we choose k := 1

100ε2 . For some large enough constant c, we set

n := ck2 log k = Õ

( 1
ε4

)
. (6.34)

This is chosen to satisfy eq. (6.37). Let δ be chosen such that

δ

log(1/δ)
:= 32

√
k logn
n

+ 1√
k

= Θ
( 1√

k

)
. (6.35)

This value is chosen to make the first property in Lemma 6.4.10 hold. Let pV be the function
defined in eq. (6.33) with γ defined as

γ := 8δ
√

logn/n. (6.36)

This value is chosen for a similar reason to before, and more precisely it is required in
Lemma 6.4.11. As in the previous lower bound (and for the same reason), we want

kγ ≤ 1
10
√
k
. (6.37)

Our choice of n in eq. (6.34) satisfies eq. (6.37).

Before constructing the wall function, we need to define the correlation cones C1, . . . , Ck,
which depend on v1, . . . , vk:

Ci :=

x ∈ Rn
∣∣∣∣∣∣ |〈vi, x〉|‖x‖

≥ 8
√

logn
n

 . (6.38)

Note that if you choose a random unit vector x, it will most likely not be in Ci since the
normalized inner product will be roughly 1/

√
n. Thus Ci is the set of directions that correlate

strongly with vi.

We define the set

Ω = {x ∈ Rn | ‖x‖ ∈ [δ, 1] ∧ ∀i ∈ [k], x /∈ Ci} (6.39)

to be the set of vectors that have non-negligible norm and are not in any of the correlation
cones Ci. We want our construction to give non-informative answers on Ω so that the algorithm
is forced to query on the complement of Ω.
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We now define our non-informative function h(x) = 2‖x‖1+α, with α > 0 set so that
δα = 1/2. Note that because of the value of δ chosen, 1/α = Θ(logn), so α is small. We want
our wall function to be equal to h(x) on Ω, but we need to define it everywhere in Rn. We
do so by extending this function to all of Rn by convexity. Informally this means that the
function takes the smallest value it can outside Ω while remaining convex. Formally, we define
the wall function as

WV (x) := max
y∈Ω
{h(y) + 〈∇h(y), x− y〉}. (6.40)

In the following lemma, we state some properties of the wall function established by
[BJL+19].

Lemma 6.4.10 (Properties of the wall function). The wall function satisfies the following
properties.

1. [BJL+19, Lemma 2]: The point x̃ = −∑i∈[k] vi/
√
k satisfies W(x̃) ≤ −1/

√
k.

2. [BJL+19, Lemma 3]: Let x ∈ Rn. For any t ∈ [k], let x = w + z, where w ∈
span(v1, . . . , vt) and z ∈ span(v1, . . . , vt)⊥. If ∀j > t, z /∈ Cj, then WV (x) does not
depend on vt+1, . . . , vk. For such x, WV (x) takes the same value as the following
function.

W(t)
V (x) = max

a,b∈R+:a2+b2∈[δ2,1]

{
−2αc1+α + 21 + α

c1−α

(
max

y∈Ω̃a,b,‖y‖=a
〈y, w〉+ b‖z‖

)}
(6.41)

where c =
√
a2 + b2 and Ω̃a,b = {x ∈ span(v1, . . . , vt) | ∀i ≤ t |〈vi,x〉|‖x‖

a√
a2+b2 < 8

√
logn/n}.6

3. Discussion after [BJL+19, Lemma 3]: Furthermore, if ∀j > t, z /∈ Cj and ‖z‖ ≥ δ, then
maxi∈[k]〈vi, x〉 − iγ 6= maxi∈[t]〈vi, x〉 − iγ implies that WV (x) ≥ pV (x).

The second property in the lemma implies that the value of the wall function on x grows
with z, the uncorrelated projection of x. The third item states that if z is somewhat large
and the maximum in the definition of pV is achieved at an index with i > t, then WV (x) is
actually larger than pV (x).

Equipped with these properties, we define the actual class of functions. For a set V of k
orthonormal vectors, we define

fV (x) := max{pV (x),WV (x)}. (6.42)

Note that WV (x) is also convex, being a maximum of linear functions. The maximum norm of
the gradient of any of the linear functions is 2(1 + α) and hence the function is 3-Lipschitz.
Each of the pV functions is 1-Lipschitz. Hence fV is also 3-Lipschitz. This completely specifies
the function fV that we will use for a given value of ε.

6Lemma 3 in [BJL+19] gives a different definition of Ω̃, but we believe this is the set they meant to define.



6.4. QUANTUM LOWER BOUND 137

We also define the following functions.

p
(t)
V (x) := max

i∈[t]
{〈vi, x〉 − iγ} and f

(t)
V (x) = max{p(t)

V (x),W(t)
V (x)}. (6.43)

Note that if the preconditions in item 2 of Lemma 6.4.10 are satisfied for some value t, then
they are also satisfied for t+ 1. So for such x, WV (x) =W(t)

V (x) =W(t+1)
V (x).

Lemma 6.4.10 implies some very convenient statements. Let v1, . . . , vk be fixed orthonormal
vectors. Then for any point x = w+z, where w ∈ span(v1, . . . , vt−1) and z ∈ span(v1, . . . , vt−1)⊥

we can make the following statements.

• If ‖z‖ ≥ δ and ∀j ≥ t, z /∈ Cj ,
then WV (x) = W(t−1)

V (x) and also pV (x) 6= p
(t−1)
V (x) =⇒ WV (x) ≥ pV (x). Hence

fV (x) = f
(t−1)
V (x).

• If ‖z‖ < δ and ∀j ≥ t, z /∈ Cj and pV (x) = p
(t)
V (x),

then WV (x) =W(t−1)
V (x) and pV (x) = p

(t)
V (x). So fV (x) = f

(t)
V (x).

We now show the following lemma, akin to Lemma 6.4.5.

Lemma 6.4.11. Let 1 ≤ t ≤ k be integers and {v1, . . . , vt−1} be a set of orthonormal vectors.
Let {vt, . . . , vk} be chosen uniformly at random so that the set {v1, . . . , vk} is orthonormal.
Then

∀x ∈ Rn : Pr
vt,...,vk

(
fV (x) 6= f

(t)
V (x)

)
≤ 1
n7 . (6.44)

Proof. Let x = w + z, where w ∈ span(v1, . . . , vt−1) and z ∈ span(v1, . . . , vt−1)⊥. Let Ex
denote the event whose probability we want to upper bound.

If ‖z‖ ≥ δ, then Ex can only occur if z ∈ Cj for some j ≥ t. Using Proposition 6.4.4, the
fact that each vj in this range is chosen uniformly at random from an n− t+1-dimensional ball
and a union bound, this probability is upper bounded by k · 2e−(n−t+1)·32 logn

n ≤ 2k · 2−32 logn =
2k/n32 ≤ 1/n31, with the inequalities holding because n > 4k.

If ‖z‖ ≤ δ, then Ex can only occur if z ∈ Cj for some j ≥ t or pV (x) 6= p
(t)
V (x). The former

probability we have already upper bounded by 1/n31. The latter probability can be upper
bounded as follows. Let E′x refer to the event pV (x) 6= p

(t)
V (x). If E′x occurs then it must hold

that

max
i∈{t+1,...,k}

〈vi, x〉 − iγ = max
i∈{t+1,...,k}

〈vi, z〉 − iγ > max
i∈[t]
〈vi, x〉 − iγ ≥ 〈vt, z〉 − tγ. (6.45)

We will show that this event is very unlikely. To do so, let Fx be the event that for all
i ∈ {t, . . . , k}, 〈vi, z〉 ∈ [−γ

2 ,+
γ
2 ]. Note that if Fx occurs, then the terms in the max are in

decreasing order, and we have

〈vt, z〉 − tγ ≥ 〈vt+1, z〉 − (t+ 1)γ ≥ · · · ≥ 〈vk−1, z〉 − (k − 1)γ ≥ 〈vk, z〉 − kγ, (6.46)
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which contradicts the previous equation. Thus if E′x holds then the complement of Fx, F̄x
must hold, which means Pr(E′x) ≤ Pr(F̄x). So let us show that Fx is very likely.

The event F̄x holds if for any i ∈ {t, . . . , k}, 〈vi, z〉 /∈ [−γ
2 ,+

γ
2 ]. We can upper bound

this probability for any particular i ∈ {t, . . . , k} using Proposition 6.4.4 and the fact that vi
is chosen uniformly at random from an n − t + 1-dimension ball. This is the same as the
probability that 〈vi, z/δ〉 /∈ [−4

√
logn/n, 4

√
logn/n]. Since z/δ ∈ B(~0, 1), this is at most

2e−(n−t+1)·8 logn
n ≤ 2 · 2−8 logn = 2/n8, with the inequality holding because n > 4t. The

probability that this happens for any i is at most k times this probability, by the union bound.
Using the fact that 4k < n, we get that Pr(E′x) ≤ Pr(F̄x) < 1/2n7.

Putting it all together, we can upper bound the probability in the lemma statement by the
maximum of 1/n31 and 1/n31 + 1/2n7, and so the lemma follows.

Letting x̃ = −∑i∈[k] vi/
√
k, it is clear that pV (x̃) ≤ −1/

√
k. We have also seen that

WV (x̃) ≤ −1/
√
k. So fV (x̃) ≤ −1/

√
k = −10ε. Any point x minimizing fV to within ε of the

optimum must satisfy pV (x) ≤ −9ε. From eq. (6.37), we see that kγ ≤ ε. So the point x must
also satisfy 〈vk, x〉 ≤ −8ε. Using this, we get the following analog of Lemma 6.4.6, whose proof
is identical.

Lemma 6.4.12. Let k > 0 be an integer and {v1, . . . , vk−1} be a set of orthonormal vectors.
Let vk be chosen uniformly at random from span(v1, . . . , vk−1)⊥ and let V = (v1, . . . , vk). Then

∀x ∈ B(~0, 1) : Pr
vk

(fV (x)− fV (x∗) ≤ ε) ≤ 2e−Ω(k). (6.47)

Finally, since the lemmas in the proof of the previous section’s quantum lower bound
(Section 6.4.4) used these two lemmas as a black box, the same proof allows us to argue that
no algorithm can perform well if it makes at most k − 1 queries to the oracle. This completes
the proof of Theorem 6.1.5.

6.5 Lower Bounds in Small Dimensions

Here we show some lower bounds on the query complexity of first-order convex optimization
(Problem 6.1.1) when n ≤ O(1/ε4) (assume G,R ≤ O(1)). We start with a lower bound that
follows from our lower bound in the previous section.

Theorem 6.5.1. Fix any n, ε such that n ≤ O(1/ε4). Solving Problem 6.1.1 on n-dimensional
functions with accuracy ε requires query complexity at least Ω̃(

√
n).

Proof. Let ε′ be the smallest value such that when plugged into Theorem 6.1.5 with G = R = 1,
we get a class of functions of dimension n for which solving Problem 6.1.1 to accuracy ε′

requires Ω(1/ε′2) queries. In that proof, n turns out to be Θ(log(1/ε′)/ε′4). Hence ε′ > ε,
and the complexity of ε-optimization of this function class is at least the complexity of its
ε′-optimization, which we know is Ω(1/ε′2) = Ω̃(

√
n).
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Figure 6.1: An inaccurate but representative depiction of the function f10(x).

We now analyze the dependence on ε of quantum algorithms solving Problem 6.1.1 in
low dimensions. We show that quantum algorithms require a log(1/ε) dependency on ε by
exhibiting a function in 1-dimension that requires log(1/ε)-queries in order to ε-optimize. This
rules out any quantum query algorithm with complexity c(n)o(log(1/ε)) for any function c.

In what follows, {0, 1}≤t is the set ∪i∈[0,...,t]{0, 1}i and for a string w, w≤i is the prefix of
w of length i. ε denotes the empty string.

6.5.1 The 1-dimensional function

Consider the family of functions F = {fz}z∈{0,1}t with fz defined below. (See Figure 6.1 for a
pictorial representation.)

Define the intervals {Iw}w∈{0,1}≤t recursively as

• Iε = [−1, 1].

• If Iw = [p`, pr], then Iw0 =
[

4p`
5 + pr

5 ,
3p`
5 + 2pr

5

]
and Iw1 =

[
2p`
5 + 3pr

5 , p`5 + 4pr
5

]
.

(In words, divide Iw into five equal intervals. Iw0 is the second interval and Iw1 is the
fourth interval.)

It is easy to see that

• |Iw0| = |Iw1| = |Iw|/5, and so Iw = 2/5|w|.

• If w is a prefix of w′, then Iw′ ⊂ Iw.

• Iw0 ∩ Iw1 = ∅.

We also define the following values.

• y0 = 0,
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• y1 = −2/5,

• y2 = y1 − 2/(5 · 15),

• y3 = y2 − 2/(5 · 152) and so on until

• yt = yt−1 − 2/(5 · 15t−1).

• Finally yopt = yt − 1/15t.

Definition 6.5.2. For a z ∈ {0, 1}t, let fz : R→ R be the piecewise linear function defined
by connecting the following values with lines.

• For |x| > 1, fz(x) = |x| − 1.

• If Iz≤i = [p`, pr], then fz(p`) = fz(pr) = yi. For instance, fz(−1) = fz(1) = 0.

• If Iz = [p`, pr], then fz(p`+pr2 ) = yopt.

We make the following observations about fz.

Observation 6.5.3. 1. fz is convex and 1-Lipschitz.

2. fz takes its minimum value at the midpoint of the interval Iz, where it takes the value
yopt.

3. To solve Problem 6.1.1 on fz with ε ≤ 1/15t, it is necessary that the algorithm outputs a
point in Iz.

Proof. We prove part 1 by computing the gradients (also referred to as slopes here) of fz. Let
i ≤ t− 1, Iz≤i = [p`, pr] and Iz≤i+1 = [q`, qr]. (Note that p` < q` < qr < pr.) The slope of fz
between p` and q` is either −2/(5·15i)

2/5i+1 = −1/3i if zi+1 = 0 or −2/(5·15i)
3·2/5i+1 = −1/3i+1 if zi+1 = 1.

Similarly the slope between qr and pr is either 1/3i+1 or 1/3i.
If Iz = [p`, pr], the slope between p` and p`+pr

2 is −1/15t
1/5t = −1/3t and the slope between

p`+pr
2 and pr is 1/3t. Hence the slope is non-decreasing and fz is convex.

Parts 2 and 3 follow from the definition of the function.

Note that the gradient may not be defined at some points, which must be the left or
right endpoints of some interval Iw = [p`, pr]. Our subgradient oracle will answer subgradient
queries at p` by giving the gradient that fz has at the right of p` and subgradient queries at
pr by giving the gradient that fz has at the left of p`.

We now see some important facts about the outputs of the oracles.

Theorem 6.5.4. For an x ∈ [−1, 1], the value and subgradient of fz at input x is decided by
ix and z≤ix+1 where ix ∈ [0, . . . , t− 1] is the unique number such that x ∈ Iz≤i but x /∈ Iz≤i+1

(and ix is equal to t if x ∈ Iz).
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Proof. Suppose we had the values of ix and z≤ix+1. Knowing z≤ix+1, we also know Iz≤ix and
Iz≤ix+1 . By the definition of the function class, the only points at which we do not know the
value and subgradients of fz are the points in Iz≤ix+1 .

The Lower Bound

We show our lower bound by reducing to the following problem.

Problem 6.5.5 (Find The First Difference). Given a string z ∈ {0, 1}t, define the ‘first
difference’ function dz : {0, 1}t → [n] ∪ ⊥ such that dz(z′) = min{i ∈ [t] | zi 6= z′i}, or ⊥ if
z = z′. With query access to dz, the task is to find the string z.

It was shown by van Apeldoorn, Gilyén, Gribling and de Wolf [vAGGdW20, Theorem 26]
that the above problem requires Ω(t) queries even for a quantum query algorithm. We show
an Ω(t) lower bound for our optimization task by a reduction to this problem.

Theorem 6.5.6. Given a q-query quantum algorithm for optimizing a function from class fz
to within 1/15t of the optimum, we get a 2q-query quantum algorithm that solves Problem 6.5.5.

Proof. We show that we can deterministically simulate the fz oracles using two calls to dz,
where the simulation does not know the value of z. To do this, we give two useful deterministic
functions Enc and Dec that translate our optimization queries to queries for Problem 6.5.5
and translate answers for Problem 6.5.5 to answers for our optimization queries.

• Enc takes as input an input x ∈ R and outputs a z′ ∈ {0, 1}t.

• Dec takes as input a x ∈ R, z′ ∈ {0, 1}t and an i ∈ [t] ∪ {⊥} and outputs y, g ∈ R.

• The two real numbers Dec(x,Enc(x), dz(Enc(x))) are fz(x) and the subgradient of fz at
x that the subgradient oracle would have output.

• For any x that optimizes fz to within 1/15t of the optimum, Enc(x) is a string z′ such
that dz(z′) = ⊥.

Given such functions, any query algorithm solving our optimization problem can be transformed
into a query algorithm solving Problem 6.5.5 with at most twice the number of queries, thus
completing the proof. We take a few moments to detail this transformation before showing
the existence of the functions.

Take a quantum query algorithm that optimizes fz to within 1/15t of the optimum. We modify this circuit
by replacing its oracle calls Ofz with the unitaries UEnc, Odz and UDec (to be defined shortly). We also
add the unitary UEnc at the end of the query algorithm to the output register. Formally, let Ofz operate
on registers in, val, grad and Odz operate on registers ind, outd. We define the unitaries UEnc and UDec as
arbitrary unitaries that satisfy the following.

• UEnc : |x〉in|0〉ind 7→ |x〉in|Enc(x)〉ind for any x ∈ R that is representable in the basis states of the
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register in. Since Enc is a deterministic computation, this is easily computable and reversible and
can hence be a unitary.

• UDec : |x〉in|Enc(x)〉ind |dz(Enc(x))〉outd |a〉val|b〉grad 7→ |x〉in|0〉ind |0〉outd |a⊕fz(x)〉val|b⊕δfz(x)〉grad
for any x ∈ R representable in the basis states of the register in, any basis state a in val and
b in grad, where δfz(x) is the subgradient that would have been returned by the oracle. To
see that this can be implemented via a unitary requires more work. Since Dec is a determinis-
tic computation, we can implement the operation |x〉in|Enc(x)〉ind |dz(Enc(x))〉outd |a〉val|b〉grad 7→
|x〉in|Enc(x)〉ind |dz(Enc(x))〉outd |a⊕fz(x)〉val|b⊕δfz(x)〉grad. Following this, we use another query to
Odz (which is its own inverse, as query oracles happen to be) to map |Enc(x)〉ind |dz(Enc(x))〉outd 7→
|Enc(x)〉ind |0〉outd and then an inverse of UEnc to map |x〉in|Enc(x)〉ind 7→ |x〉in|0〉ind .

Let |ψ〉 be an arbitrary quantum state of the original quantum algorithm. Note that
UDecOdzUEnc|ψ〉|0〉ind |0〉outd = (Ofz |ψ〉) |0〉ind |0〉outd . Equipped with these unitaries, any quantum query
algorithm on registers in, val, grad and an ancillary register anc making queries to Ofz is replaced with
a quantum query algorithm on registers in, val, grad, anc, ind and outd making queries to Odz which
simulates the original algorithm, i.e. if the original algorithm reaches state |ψ〉, the simulated algorithm
reaches state |ψ〉|0〉ind |0〉outd . Assuming for simplicity that the original algorithm stores its final output in
the register in, the simulated algorithm stores its final output in the register ind, and the probability of
the latter giving a correct output is at least the probability of the former giving a correct output.

This leaves us with proving that the functions Enc and Dec do exist. We take Enc to be
the function mapping x to w0t−|w| where w = arg maxw′∈{0,1}≤t,x∈Iw′{|w

′|} (note that the
maximizer is unique).

To define Dec, we look at the output of dz(Enc(x)). If it is ⊥, then the value of z is
revealed. If it is i ∈ [t], then we know z≤i. From Theorem 6.5.4, x and z≤i decides fz(x) and
the subgradient of fz at x as long as x /∈ Iz≤i . We know x /∈ Iz≤i since if it were, the value of
Enc(x) would have had z≤i as a prefix and so dz(Enc(x)) would have had to be larger than i.
Hence we know fz(x) and the subgradient of fz at x and the function Dec exists.

Corollary 6.5.7. Given an ε > 0, let t = blog15(1/ε)c. Solving Problem 6.1.1 on our function
class from Definition 6.5.2 requires Ω(t) = Ω(log(1/ε)) queries.

In the classical case, we know that ≈ n log(1/ε) is the complexity of first-order convex
optimization when n ≤ O(1/ε2). Can we make a similar statement for the quantum complexity?
In our thesis we could not show as strong a lower bound, but we do manage to show a lower
bound of Ω̃(

√
n log(1/ε)) in the next section.

6.5.2 The n-dimensional function

The function here is quite similar to the 1-dimensional function, except that we make indepen-
dent copies of it in each of the n-dimensions.

Definition 6.5.8. Given z = (z(1), z(2), . . . , z(n)) ∈ ({0, 1}t)n, define fz : Rn → R as

fz(x) = max
i∈[n]

fz(i)(xi).
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We consider the subgradient oracle for this function to be the one that outputs the
subgradient corresponding to the minimum i that maximizes the expression above.

Note that the complexity of optimizing over this class of functions is at least Ω(t) since
we can arbitrarily set the values of z(2) to z(n) and we’ll still have the 1-dimensional function
class to optimize over, requiring Ω(t) queries. We want to show a lower bound of Ω̃(

√
nt). In

the case where t ≥ 2
√
n the lower bound of Ω(t) already shows such a lower bound. So from

here on we will assume that t < 2
√
n.

Let us first look at some subproblems that we want to accomplish using the oracles of
fz. Consider, for any i ∈ [t], the ‘subproblem’ of finding out z(1)

i , z
(2)
i , . . . , z

(n)
i . Since any

1/15t-optimal point x must lie in Iz(1) × Iz(2) ×· · ·× Iz(n) and these z values can be read off the
point x, any successful algorithm has also solved each subproblem. Furthermore if x does not
lie in I

z
(1)
≤i
× I

z
(2)
≤i
× · · · × I

z
(n)
≤i

then the values of z(1)
>i do not come into play when computing

the function value. We can use this property in order to come up with a hybrid argument.
We show that each subproblem needs around

√
n queries to solve, and that without having

solved one, queries barely get any information about subsequent subproblems. If instead no
information was revealed about subsequent subproblems, then the algorithm has no choice
but to solve each subproblem in succession, hence requiring around

√
nt queries. The hybrid

argument formalizes the statement that this is effectively the case even when only a little
information is revealed about later subproblems.

We now start with analyzing the complexity of solving a subproblem.

Lemma 6.5.9. Let b = (b1, b2, . . . , bn), with each bi ∈ {0, 1} and define fb as in Defi-
nition 6.5.8. Solving Problem 6.1.1 with ε = 1/15 on the class of functions fb requires
Ω(
√
n/ logn) queries. Furthermore, for δ ≥ 2−

√
n, Ω(

√
n/ log(n/δ)) queries are required to get

even a δ probability of success when b is distributed uniformly from {0, 1}n.

Proof. We prove this by showing that queries to fb can be simulated by ‘find the first difference
with b’ queries wherein you may also specify a permutation of [n] and ‘first’ is interpreted as
first in the permuted list of bits. We will see that under this simulation, 1/15-approximating fb
implies that b is learned. As stated in the discussion at the end of Section 6.3.1 the constant-
error quantum query complexity of the task of learning b with such queries is Ω(

√
n/ logn).

The argument is quite straightforward so we present it before showing that they simulate
queries to fb.

Any of these ‘find the first difference under this permutation’ queries can be computed with
a small error probability with O(

√
n) queries to the bits of b. With O(

√
n log(

√
n log(n/δ)))

queries to the bits of b, the error can be made δ/
√
n.

We can use Grover’s search to find out if there is a difference in the queried and actual bitstring in
O(
√
n log(

√
n log(n/δ))) = O(

√
n log(

√
n/δ)) queries with error ≤ δ/

√
n logn. We then use binary search

to find the first difference, the whole process taking O
(√

n+
√
n/2 + . . .

)
log(
√
n/δ) = O(

√
n log(

√
n/δ))

queries. The overall error is still ≤ δ/
√
n. That we can reduce the error, use subroutines multiple times
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and have errors add up only linearly is guaranteed by the BQP Subroutine Theorem. (See the discussion
before Section 2.3.1.)

We know from Lemma 2.3.3 that Ω(n) queries to the bits of b are required in order to
learn b. In fact, a quantum query algorithm A must make Ω(n) queries even to satisfy

E
b∈{0,1}n

(
A outputs b

)
≥ 2−Ω(n).

So if there existed an algorithm A that made k queries to fb and outputs b with probability at
least δ, then there is an algorithm that makes O(k

√
n log(

√
n/δ)) queries to the bits of b and

behaves similarly to A in that it outputs b with probability at least δ − k · δ/
√
n ≥ δ/2 when

k <
√
n/2. Since we are only dealing with δ ≥ 2−

√
n � 2−Ω(n), we know that k must be at

least Ω
(

n√
n log(

√
n/δ)

)
≥ Ω

( √
n

log(
√
n/δ)

)
.

We now show the relationship between the two types of queries. Let x = (x1, x2, . . . , xn)
be a point in Rn. If any xi has absolute value larger than 1, we know the function value
is maxi{|xi| − 1}. In order to compute fb(x) on other inputs, we compute, for each i ∈ [n],
yi,0 = f0(xi) and yi,1 = f1(xi). Let yi,max and yi,min be the maximum and minimum of the
two respectively. Note that

fb(x) = max
i∈[n]

fbi(xi) = max
i∈[n]

yi,bi .

Our ‘find the first difference under this permutation’ query would then be specified by (a) the
permutation specified by the decreasing order of yi,max, and (b) the bitstring b′ where b′i = 1 if
yi,min = yi,1 and 0 otherwise. (That is, we guess that b is set to minimize yi,bi for each index
i.)

Let the answer of the first difference query be j ∈ [n] ∪ {⊥} and let S be the set of indices
before j under the ordering. Then we have that

fb(x) = max{yj,max,max
i∈S

yi,min}.

We can compute this since we know from the first difference query all the bits of b in indices
S ∪ {j}. The subgradient can also be computed since we know which the first index is that
maximized the expression in the definition of fb.

It is also clear from the definition of fb that fb(x) is within 1/15 of its optimal value if
and only if x ∈ ∏i∈[n] Ibi and on such an input x, the simulated query would involve b′ = b,
resulting in the output being ⊥ and hence b would be learned.

(The details of how a simulation can be carried out in the setting of a quantum query
algorithm is given in the proof of Theorem 6.5.6.)

We now state a consequence of the above that will be very useful for our main hybrid
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argument. Let q ≥ Ω
( √

n
log(nt)

)
be such that any quantum query algorithm making q queries

has success at most 1
100nt5 for the problem in Lemma 6.5.9.

Corollary 6.5.10. Choose an arbitrary function g : Rn → R such that for x 6∈
∏
i∈[n] Ibi,

fb(x) = g(x). Let A be a quantum algorithm making at most q queries to fb and A′ be the
same as A but with queries to fb replaced with queries to g. Then for any initial state |ψ〉,

E
b∈{0,1}n

(
‖A|ψ〉 − A′|ψ〉‖2

)
≤ 1/25t5.

Proof. Fix a value of b. Then for any state |φ〉 = ∑
x αx|x〉|φx〉 in the appropriate registers,

Of
b
|φ〉 −Og|φ〉 =

∑
x:f

b
(x)6=g(x)

αx(Of
b
−Og)|x〉|φx〉,

which has norm squared at most ∑x:f
b
(x)6=g(x) |αx|2 · 4. Since fb(x) 6= g(x) implies that

x ∈
∏
i∈[n] Ibi , we can upper bound ∑x:f

b
(x)6=g(x) |αx|2 by the probability that measuring |φ〉

gives us a point that 1/15-optimizes fb(x).
Now let A be an arbitrary quantum algorithm making at most q queries. Without loss

of generality, let it be UqOf
b
Uq−1Of

b
· · ·Of

b
U1Of

b
U0. We define hybrid algorithms that swap

some oracles with oracles for g.

• A0 is the same as A.

• Ai replaces the last i oracle queries of A with oracle queries for g.

Ai = UqOgUq−1 · · ·Uq−i+1OgUq−iOf
b
Uq−i−1 · · ·U1Of

b
U0.

Note thatAq is the same asA′. We now analyze, for any i ∈ [q], Eb∈{0,1}n
(
‖Ai−1|ψ〉 − Ai|ψ〉‖2

)
.

For any b, we look at the quantity ‖Ai−1|ψ〉 − Ai|ψ〉‖2.

‖Ai−1|ψ〉 − Ai|ψ〉‖2 = ‖Of
b
Uq−iOf

b
· · ·U1Of

b
U0|ψ〉 −OgUq−iOf

b
· · ·U1Of

b
U0|ψ〉‖2 (6.48)

= ‖Og|φ〉 −Ob|φ〉‖
2 (6.49)

where |φ〉 = Uq−iOf
b
· · ·U1Of

b
U0|ψ〉. As we saw earlier, this quantity is upper bounded by 4

times the probability that measuring the state |φ〉 gives us a point that 1/15-optimizes fb.
Taking the expectation over all the values of b, we get that Eb∈{0,1}n

(
‖Ai−1|ψ〉 − Ai|ψ〉‖2

)
is

upper bounded by 4 times the probability that the algorithm Uq−iOf
b
· · ·U1Of

b
U0|ψ〉 actually

solves the problem in Lemma 6.5.9 when b is sampled uniformly at random. We know by the
definition of q that this probability is at most 1

100nt5 . We can now complete the proof with an
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application of Cauchy-Schwarz.

E
b∈{0,1}n

(
‖A|ψ〉 − A′|ψ〉‖2

)
= E

b∈{0,1}n


∥∥∥∥∥∥
∑
i∈[q]
Ai−1|ψ〉 − Ai|ψ〉

∥∥∥∥∥∥
2
 (6.50)

≤ E
b∈{0,1}n


∑
i∈[q]
‖Ai−1|ψ〉 − Ai|ψ〉‖

2
 (6.51)

= E
b∈{0,1}n


∑
i∈[q]
‖Ai−1|ψ〉 − Ai|ψ〉‖ · 1

2
 (6.52)

≤ E
b∈{0,1}n

∑
i∈[q]
‖Ai−1|ψ〉 − Ai|ψ〉‖2

∑
i∈[q]

12

 (6.53)

≤ q

25nt5 · q ≤
1

25t5 .

We can now formalize the set-up of our main hybrid argument. Let us define some
intermediate functions. For each i ∈ [t], define f (i)

z = fz≤i where z≤i = (z(1)
≤i , . . . , z

(n)
≤i ). Note

that f(x) = f (i)(x) for all x 6∈ I
z

(1)
≤i
× I

z
(2)
≤i
× · · · × I

z
(n)
≤i

. Hence for x outside that region, even
the subgradient queries output the same value.

One important observation is the recursive nature of these functions. Given the values of z(1)
<i , . . . , z

(n)
<i ,

the function f (i)
z

is ‘equivalent’ to the function f
b

where b = (z(1)
i , . . . , z

(n)
i ) with the following equivalence:

The relevant domain of the former, I
z

(1)
<i

× I
z

(2)
<i

× · · · × I
z

(n)
<i

, is linearly mapped to [−1, 1]n. The output of

the former is shifted up by yi−1 (see Definition 6.5.2) and then scaled by 15i−1 to get the corresponding
output of the latter.

Let A be an algorithm that claims to optimize fz within tq queries. Without loss of
generality, let A be

A = A0 = UtqOfzUtq−1Ofz · · ·OfzU1OfzU0.

We consider the following hybrid algorithms.

Definition 6.5.11 (Hybrid algorithms). Define A1 to At as follows.

• A1 replaces the first q oracle queries of A0 (between Uq and U0) with oracles for f (1)
z .

• A2 is the same as A1 except that it replaces the q oracle queries between U2q and Uq

with oracles for f (2)
z .

• Inductively we define, for i ∈ [t], Ai to be the same as Ai−1 except that it replaces the q
oracle queries between Uiq and U(i−1)q with oracles for f (i)

z .

We now show that the behaviour of Ai−1 is similar to that of Ai for each i ∈ [t], and that
At does not compute the function. These follow from Corollary 6.5.10 and Lemma 6.5.9 and
when put together, we get that A does not compute the function.
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Lemma 6.5.12 (Ai−1 and Ai have similar outputs). Let i ∈ [t] and Ai−1 and Ai be the hybrid
algorithms as defined in Definition 6.5.11. Then for any state |ψ〉,

E
z

(
‖Ai−1|ψ〉 − Ai|ψ〉‖2

)
≤ 1

25t5 . (6.54)

Proof. Let us arbitrarily fix the values of z(1)
<i , z

(2)
<i , . . . , z

(n)
<i and of z(1)

>i , z
(2)
>i , . . . , z

(n)
>i . Let

z
(1)
i , z

(2)
i , . . . , z

(n)
i be chosen uniformly at random. Note that with the fixed values, our

algorithms need not make any queries before U(i−1)t since the oracles there depend only on
fixed values and can be simulated.

Ai−1 and Ai are different only because of q fz oracles that have been replaced with f
(i)
z

oracles. These two functions differ only in ∏j∈[n] Iz(j)
≤i

. Since we have fixed and hence know

the values of I
z

(j)
<i

, we may as well restrict ourselves to ∏j∈[n] Iz(j)
<i

. Here the function f
(i)
z is

merely a ‘scaling and shifting’ of the function fb where b = (z(1)
i , z

(2)
i , . . . , z

(n)
i ).

Let |φ〉 = U(i−1)qOf (i−1)
z

· · ·O
f

(1)
z

U0|ψ〉 be the state of the algorithms Ai and Ai−1 after
they go through the initial unitaries that they share. We can use Corollary 6.5.10 to conclude
that for any state |ψ〉,

E
zi

(
‖Ai−1|ψ〉 −Ai|ψ〉‖2

)
(6.55)

= E
zi

(
‖OfzUiq−1 · · ·U(i−1)q+1Ofz |φ〉 −Of (i)

z

Uiq−1 · · ·U(i−1)q+1Of (i)
z

|φ〉‖2
)

(6.56)

≤ 1
25t5 . (6.57)

Since the uniform distribution for z is a convex combination of the uniform distributions
for zi with the various fixings of the other variables, this holds for the uniform distribution on
z as well.

Lemma 6.5.13 (At does not solve the task). Let p′z be the probability that At outputs a valid
1/15t-optimal point when run on the function fz. Then

E
z

(
p′z
)
≤ 1

100nt5 . (6.58)

Proof. Again we arbitrarily fix the values of z<t. The first (t− 1)q queries are made to oracles
that only depend on these fixed values. Hence A becomes a q query algorithm querying the
bits zt. Setting b = zt, we see that the algorithm is optimizing a ‘scaled and shifted’ version of
fb. We know from the definition of q that no q-query algorithm can optimize fb with success
probability at least 1

100nt5 .
Since the uniform distribution for z is a convex combination of the uniform distributions

for zt with the various fixings of the other variables, this holds for the uniform distribution on
z as well.
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Lemma 6.5.14 (A does not solve the task). Let pz be the probability that A outputs a valid
1/15t-optimal point when run on the function fz. Then

E
z

(
pz
)
≤ 2/t. (6.59)

Proof. This proof is very similar to the proof of Lemma 6.4.9.
Let Pz be the projection operator that projects a quantum state |ψ〉 onto the space spanned

by vectors |x〉 for x being 1/15t-optimal for fz. Then when the input is fz, ‖PzA|0〉‖2 = pz.
We know from Lemma 6.5.13 that Ez

(
‖PAt|0〉‖2

)
≤ 1

100nt5 . We prove our upper bound on the
probability by showing that it is not far from Ez

(
‖PzAt|0〉‖2

)
.

Lemma 6.5.12 states that for all 1 ≤ t < k, Ez
(
‖Ai−1|0〉 −Ai|0〉‖2

)
≤ 1

25t5 . Using
telescoping sums and the Cauchy-Schwarz inequality, we see that

E
z

(
‖At|0〉 − A|0〉‖2

)
≤ E

z


∑
i∈[t]
‖Ai−1|0〉 − Ai|0〉‖

2
 (6.60)

≤ E
z

∑
i∈[t]
‖Ai−1|0〉 − Ai|0〉‖2

∑
i∈[t]

12

 ≤ t

25t5 · t ≤
1

25t3 (6.61)

For all z, |‖PzAt|0〉‖ − ‖PzA|0〉‖| ≤ ‖PzAt|0〉 − PzA|0〉‖ = ‖Pz(At|0〉 − A|0〉)‖. Since Pz
is a projection, this is at most ‖At|0〉 − A|0〉‖.

Hence Ez
((
‖PzAt|0〉‖ − ‖PzA|0〉‖

)2) ≤ 1
25t3 . By Markov’s inequality, Prz

((
‖PzAt|0〉‖ −

‖PzA|0〉‖
)2 ≥ 1

25t2
)
≤ 1

t . So it is overwhelmingly likely that ‖PzA|0〉‖−‖PzAt|0〉‖ ≤ 1
5t , which

implies ‖PzA|0〉‖2−‖PzAt|0〉‖2 ≤ 2
5t since both norms are at most 1. Even assuming that in the

unlikely cases the difference is the maximum possible, we still get Ez
(
‖PzA|0〉‖2−‖PzAt|0〉‖2

)
≤

1
t + 2

5t .
We can now use linearity of expectation and upper bound our required probability as

E
z
(pz) = E

z

(
‖PzA|0〉‖2

)
≤ 1

100nt5 + 1
t

+ 2
5t . (6.62)

We finish this section by viewing this from the lens of convex optimization.

Theorem 6.5.15. For any n ∈ N, G,R, ε > 0, there exists a family of functions f :
Rn → R with Lipschitz constant G in the ball of radius R such that any quantum algo-
rithm that solves Problem 6.1.1 with high probability on this function family must make
Ω(
√
n log(GR/ε

√
n)/ log(n log(GR/ε

√
n))) queries to f or FO(f) in the worst case.

Proof. Let t = blog(1/ε)c. We showed in Lemma 6.5.14 that optimizing fz in the domain
[−1, 1]n requires Ω(

√
nt/ log(nt)) queries. Since this domain is inside the ball of radius

√
n

and the function is 1-Lipschitz, we have a family of functions with GR/ε =
√
n/ε. From the

discussion after the definition of Problem 6.1.1, we see that its complexity is a function of n
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and GR/ε. Hence our lower bound is actually for all G,R, ε and the lower bound is

Ω

 √
n log( GR

ε
√
n

)
log(n log( GR

ε
√
n

))

 .
Note that if G = R = 1, then this lower bound only makes sense when n < 1/ε2. At

n = 1/2ε2, it simplifies to Ω̃(
√
n) and when n < 1/ε2−Ω(1), it simplifies to Ω̃(

√
n log(1/ε)).

We end this section by making an observation about the above task but in the classical
setting. One can show a randomized lower bound of Ω(n log( GR

ε
√
n

)) for the same function
family that we use above. The proof of this is almost exactly the proof of Lemma 6.3.4. One
argues that if z were chosen uniformly at random from ({0, 1}t)n, then every query would
leave the posterior distribution as the uniform distribution over some subset of the tn bits.
On expectation, one would learn at most 2 bits and so Ω(tn) queries are needed in order to
query with constant probability a 1/15t-approximate solution.

6.6 Open problems

We showed that in the black-box setting, no quantum algorithm can beat gradient descent in
general, in the dimension-independent regime. Here are some interesting questions left open
by our work:

1. We showed in Theorem 6.1.4 that the class of functions used in the randomized lower
bound can be solved faster with quantum queries. Is there a more interesting class of
functions on which we can achieve a quantum speedup?

2. Can the quantum lower bound in Section 6.4 be made to work using the simpler class of
functions fV (x) = maxi〈vi, x〉 (which is our function with γ = 0)? If so, this might also
decrease the dimension n required.

3. We showed in Section 6.5 that even dimension-dependent algorithms can experience at
best a quadratic speedup. Can we establish tighter quantum lower bounds in this regime
showing that there is no speedup? When 1/ε is a large polynomial in n, the complexity
of gradient descent is also a large polynomial in n, but a dimension-dependent algorithm
such as the center of gravity method [Bub15] yields an O(n logn) upper bound. Can we
establish an Ω̃(n) lower bound in this regime? This is essentially the same as the problem
left open by [CCLW20, vAGGdW20], but phrased in the language of membership and
separation oracles.
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Chapter 7

Some Open Problems

In this chapter we collate some open problems that arise in various parts of this thesis.
As mentioned in Chapter 3, it was conjectured that every function with small randomized

communication complexity has an exact representation that is efficient as measured by the
γ2 norm of its communication matrix. We also noted that there is a good reason for why
we do not have a counterexample, and that there is only one known explicit function that
can possibly refute this conjecture. We conjecture that this function does indeed refute the
conjecture.

Define the function Integer Inner Product (IIP) as defined by [CLV19].

Definition 7.1. The function IIP : [−N,N ]6 × [−N,N ]6 → {0, 1} is defined as

IIP(x1, . . . , x6, y1, . . . , y6) = 1 if and only if
∑
i∈[6]

xiyi = 0.

Conjecture 7.2: γ2(IIP)

γ2(IIP) ≥ NΩ(1).

Some other conjectures we are interested in arise while studying randomized parity decision
trees. The first of these is a fundamental question about the power of randomization in parity
decision trees. Our conjecture is that all that randomized parity decision trees can do is
balancing deterministic parity decision trees. We noted in Theorem 3.3.6 that the balancing of
parity decision trees is in some sense captured by the notion of Subspace Decision Tree depth.
Our conjecture is as follows.

Conjecture 7.3: Randomized PDTs are limited to Subspace Queries

For any total function f : {0, 1}n → {0, 1}, R⊕1/3(f) ∈ Θ̃(D∧⊕(f)).
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We are also interested in a fascinating combinatorial phenomenon that occurs in decision
trees, but that is currently not known in parity decision trees. In the proof of Lemma 5.1.2 it
is shown that if we partition the n-dimensional Boolean hypercube into c subcubes, then there
is a decision tree with at most 2polylog(c,n) leaves such that the leaves form a refinement of the
partition. We conjecture the equivalent statement is true in the parity decision tree model as
well. (We had mentioned this before as Conjecture 5.1.3.)

Conjecture 7.4: Partitioning the Hypercube with Affine Spaces

Let T be a partition of the n-dimensional Boolean hypercube into c affine subspaces.
Then there is a parity decision tree with at most 2polylog(c,n) leaves such that the leaves
form a refinement of T .

In Section 3.5 we noted a few ways in which measures of f exactly lift to measures of
f ◦XOR. However, there is a multiplicative loss of 1/n when lifting from approximate sparsity to
approximate rank for Boolean functions since we go through spectral norm (Theorem 3.5.6). We
conjecture that this is not necessary. (We had mentioned this previously as Conjecture 3.5.7.)

Conjecture 7.5: Sparsity Lifting

Let f : {0, 1}n → {0, 1}. Then rank1/3(f ◦ XOR) = Θ(spar1/3(f)).

In Chapter 5, we came up with a class of functions that are known to be hard for RPDTs,
but whose compositions with XOR are not known to be hard for randomized communication
protocols. We pose a conjecture regarding well-spread subspaces, that losing entropy ‘with
respect to each subspace’ must entail a large loss of entropy. This is Conjecture 5.5.1 and we
state a simplified version here.

Conjecture 7.6: A Shearer-Like Statement for Subspaces

Let V = {V1, . . . , Vm} be an n-dimensional (s, h)-dual subspace designa. Let Bi be
the coset mapb of Vi. Let X be a random variable over {0, 1}n such that ‖Bi(X) −
U2codim(Vi)‖1 ≥ Ω(1) for 100h values of i ∈ [m]. Then H(X) ≤ n− Ω(s).

aa way of defining well-spread, see Definition 5.3.1
ba natural notion of projection, see Section 5.2.1

In Chapter 6, we show various lower bounds on the quantum query complexity of first-order
convex optimization. However, as shown in Figure 1.4b (reproduced here as Figure 7.1), there
is a gap between the upper and lower bounds when n is small. The open problem of finding a
stronger lower bound is equivalent to other open problems posed by [CCLW20, vAGGdW20]. In
particular for the class of functions parametrized by Ω(n) orthonormal vectors v1, . . . , vk ∈ Rn

as
fv1,...,vk(x) = max

i∈[k]
〈vi, x〉,
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Figure 7.1: The plot shown above is with an arbitrary fixed value of ε. The axes are plotted
in log-scale and the graph is for representational purposes. Note that log(ε−1/

√
n) = Ω(1) for

n = 1/2ε2 and Ω(log(1/ε)) for n = 1/ε2−Ω(1).
In this thesis, we show the above-plotted lower bounds on the complexity of first-order convex
optimization for quantum algorithms. In particular, we show that there is no dimension-
independent quantum algorithm that can outperform the deterministic algorithm of Projected
Gradient Descent.

we conjecture that a quantum query algorithm that solves the task of optimizing fv1,...,vk to
within an additive 0.1/

√
k of the optimum would require Ω(n) queries. If true, this would

essentially close the gap.

Conjecture 7.7: Minimizing Max-Correlation

Solving Problem 6.1.1 on the function class stated above with G = 1, R = 1, ε = 0.1/
√
k

requires Ω(n) queries even for quantum query algorithms.
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[BJL+19] Sébastien Bubeck, Qijia Jiang, Yin Tat Lee, Yuanzhi Li, and Aaron Sidford.
Complexity of highly parallel non-smooth convex optimization. In Advances
in Neural Information Processing Systems 32: Annual Conference on Neural
Information Processing Systems 2019, NeurIPS 2019, 8-14 December 2019,
Vancouver, BC, Canada, pages 13900–13909, 2019.

[BKL+19] Fernando G. S. L. Brandão, Amir Kalev, Tongyang Li, Cedric Yen-Yu Lin,
Krysta M. Svore, and Xiaodi Wu. Quantum SDP Solvers: Large Speed-Ups,
Optimality, and Applications to Quantum Learning. In 46th International
Colloquium on Automata, Languages, and Programming (ICALP 2019), volume
132, pages 27:1–27:14, 2019.



BIBLIOGRAPHY 157

[BMT19] Mark Bun, Nikhil S. Mande, and Justin Thaler. Sign-rank can increase under
intersection. In 46th International Colloquium on Automata, Languages, and
Programming, ICALP 2019, July 9-12, 2019, Patras, Greece, volume 132, pages
30:1–30:14, 2019.

[BPSW06] Paul Beame, Toniann Pitassi, Nathan Segerlind, and Avi Wigderson. A strong
direct product theorem for corruption and the multiparty communication
complexity of disjointness. Comput. Complex., 15:391–432, 2006.

[BS83] Walter Baur and Volker Strassen. The complexity of partial derivatives. Theo-
retical Computer Science, 22:317 – 330, 1983.

[BS90] Jehoshua Bruck and Roman Smolensky. Polynomial threshold functions, AC0

functions and spectral norms (extended abstract). In 31st Annual Symposium
on Foundations of Computer Science, St. Louis, Missouri, USA, October 22-24,
1990, Volume II, pages 632–641, 1990.

[BS17] Fernando G.S.L. Brandão and Krysta M. Svore. Quantum speed-ups for solving
semidefinite programs. In 58th Annual Symposium on Foundations of Computer
Science (FOCS 2017), oct 2017.

[BS18] Eric Balkanski and Yaron Singer. Parallelization does not accelerate convex
optimization: Adaptivity lower bounds for non-smooth convex minimization.
arXiv preprint arXiv:1808.03880, 2018.
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